# **Environmental Protection Department**Operations and Regulatory Affairs Division

# LLNL NESHAPs 2001 Annual Report



Lawrence Livermore National Laboratory University of California Livermore, California 94551

# LLNL NESHAPs 2001 Annual Report

Robert J. Harrach Sylvie-Ring Peterson Gretchen M. Gallegos Paula J. Tate Nicholas A. Bertoldo Paris E. Althouse



#### **Contributors:**

Donald H. MacQueen Judy L. Kelly Frank J. Gouveia

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

#### U.S. Department of Energy Radionuclide Air Emission Annual Report (under Subpart H of 40 CFR Part 61) Calendar Year 2001

**Site Name:** Lawrence Livermore National Laboratory

#### **Operations Office Information**

Office: U.S. Department of Energy

Oakland Office

Address: 1301 Clay Street, Room 700N

Oakland, CA 94612-5208

Contact: Steve Black Phone: 510-637-1595

#### **Site Information**

Operator: University of California

Address: 7000 East Avenue

Livermore, CA 94551

Contact: C. Susi Jackson Phone: 925-423-6577

June 2002

# **Table of Contents**

| SYNOPSIS                                                                                                                      | 1       |
|-------------------------------------------------------------------------------------------------------------------------------|---------|
| SECTION I. Facilities Information                                                                                             | 2       |
| Site Description                                                                                                              | 2       |
| Livermore Site                                                                                                                |         |
| Figure 1. Locations of LLNL Livermore site and Site 300                                                                       | 3       |
| Site 300                                                                                                                      |         |
| <b>Figure 2.</b> Wind rose showing the average annual wind speed, frequency of occurrence, and direction Livermore site, 2001 |         |
| Figure 3. Wind rose showing the average annual wind speed, frequency of occurrence, and direction 300, 2001                   | at Site |
| SECTION II. Air Emission Sources and Data                                                                                     |         |
|                                                                                                                               |         |
| Sources 2001 Air Monitoring                                                                                                   |         |
| 2001 Air Monitoring  Continuous Stack Air Effluent Monitoring                                                                 |         |
| Table 1. Air effluent sampling systems and locations.                                                                         |         |
| Results of stack monitoring for tritium                                                                                       |         |
| Stack monitoring for gross alpha and gross beta radiation                                                                     |         |
| Figure 4. Combined HT and HTO emissions from the Tritium Facility, 1981-2001,                                                 |         |
| distinguishing between chronic releases during normal operations (black bars) and acute                                       |         |
| accidental releases (gray bars). Accidental releases are predominantly HT gas                                                 |         |
| Air Surveillance Monitoring for Radioactive Particles and Gases                                                               | 9       |
| Recognition of need to apply correction factors to results of                                                                 |         |
| tritium surveillance air monitoring                                                                                           |         |
| Radionuclide Usage Inventory Update                                                                                           | 11      |
| SECTION III. Dose Assessment Methods and Concepts                                                                             | 12      |
| Description of the Air Dispersion and Dose Model                                                                              | 12      |
| Summary of Model Input Parameters                                                                                             |         |
| General model inputs                                                                                                          |         |
| Meteorological data                                                                                                           |         |
| Surrogate radionuclides                                                                                                       | 12      |
| Population inputs                                                                                                             |         |
| Land use and agricultural inputs                                                                                              |         |
| Emission source terms                                                                                                         | 13      |
| Table 2. List of materials exempted from the "treat as a gas above 100°C" rule, and temperatures                              |         |
| at which the various physical state factors apply                                                                             |         |
| Site-wide maximally exposed individual                                                                                        | 14      |

| Figure 5. Location of site-wide maximally exposed individual (SW-MEI) at the                    |         |
|-------------------------------------------------------------------------------------------------|---------|
| Livermore site, 2001                                                                            |         |
| Maximally exposed public individual                                                             |         |
| Figure 6. Location of site-wide maximally exposed individual (SW-MEI) at Site 300, 2001         |         |
| Special Modeling Challenges                                                                     |         |
| Site 300 explosives experiments                                                                 |         |
| Diffuse sources                                                                                 |         |
| Modeling Documentation                                                                          | 1/      |
| SECTION IV. Results of 2001 Radiological Dose Assessment                                        | 18      |
| Total Dose to Site-Wide Maximally Exposed Individuals                                           | 18      |
| Doses from Unplanned Releases                                                                   | 19      |
| Table 3. List of facilities or sources whose emissions accounted for more than 90% of the SW-ME | I       |
| doses for the Livermore site and Site 300 in 2001.                                              |         |
| Population Doses                                                                                | 19      |
| Table 4. Doses (in mrem) calculated for the site-wide maximally exposed individual (SW-MEI)     |         |
| at the Livermore site and Site 300, 1990 to 2001                                                |         |
| Compliance with 40 CFR 61 Subpart H (61.93)                                                     | 21      |
| SECTION V. Certification                                                                        | 22      |
| SECTION VI. Supplemental Information on New Projects and Facilitie                              | s23     |
| NESHAPs Responsibilities of LLNL Programs/Projects                                              |         |
| Major New Facilities                                                                            |         |
| ,                                                                                               |         |
| SECTION VII. NESHAPs QA/QC Activities                                                           | 25      |
| NESHAPs Quality Assurance (QA) Program                                                          | 25      |
| Quality Control (QC) for 2001 Radiological Usage Inventory and Mode.                            | ling26  |
| Proposal to EPA for Use of a Graded-Risk Approach for NESHAPs                                   |         |
| Compliance                                                                                      | 26      |
| SECTION VIII. Supplementary Information on Radiological Dose Asse                               | essment |
| for 2001                                                                                        |         |
| Livermore Site Principal Diffuse Sources                                                        |         |
| Building 331 Outside Yard                                                                       |         |
| Building 514 Tank Farm                                                                          |         |
| Building 612 Yard                                                                               |         |
| Southeast Quadrant                                                                              |         |
| Site 300 Principal Diffuse Sources                                                              |         |
| Tritium Evaporation and Migration at Site 300                                                   |         |
| Resuspension of Depleted Uranium in Soil at Site 300                                            |         |
| Modeling Dose from Tritium                                                                      |         |
| 1,10401115 DOOC 110111 111111111                                                                |         |

| Comparison of 2001 Modeling Results with Tritium Surveillance                                 |    |
|-----------------------------------------------------------------------------------------------|----|
| Monitoring Data                                                                               | 31 |
| Figure 7. Tritiated water vapor surveillance sampling locations, Livermore site               | 32 |
| Table 10. Comparison of measured and modeled annual-average concentrations of tritiated water |    |
| vapor(HTO) in air at selected Livermore site locations, 2001                                  |    |
| Effect on Modeling/Monitoring Comparison of Applying Correction Factor                        |    |
| to Results of Tritium Air Monitoring                                                          | 33 |
| Table 11. Previously published (upper) and revised (lower) ratios of predicted-to-observed    |    |
| concentrations of tritiated water at LLNL perimeter locations and ZON7, 1997-2000             | 34 |
| SECTION IX. Supplemental Information on Compliance                                            | 35 |
| Status of Compliance with Other Regulations                                                   | 35 |
| Status of Compliance with 40 CFR 61 Subpart Q – National Emission                             |    |
| Standards for Radon Emissions from Department of Energy Facilities                            | 35 |
| Status of Compliance with 40 CFR 61 Subpart T – National Emission                             |    |
| Standards for Radon Emissions from the Disposal of Uranium                                    |    |
| Mill Tailings                                                                                 |    |
| Information on Radon-220 and Radon-222 Emissions                                              | 35 |
| Attachment 1. LLNL NESHAPs 2001 Annual Report Spreadsheet                                     | 36 |
| Guidance for Interpreting the Data Spreadsheet                                                | 36 |
| Radionuclides                                                                                 | 36 |
| Radionuclide Usage Inventories with Potential for Release                                     | 36 |
| Physical State Factors                                                                        |    |
| Stack Parameters                                                                              |    |
| Emission Control Devices                                                                      |    |
| Control Device Abatement Factors                                                              |    |
| Estimated Annual Emissions.                                                                   |    |
| 10 mrem/y Site-Wide Dose Requirement                                                          |    |
| Source Categories                                                                             |    |
| -                                                                                             |    |
| Attachment 2. Surrogate Radionuclides List                                                    | 60 |
| Table 2-1. List of surrogate radionuclides.                                                   | 61 |
| Attachment 3. Content and Outcome of Proposal to EPA for Use of a                             |    |
| Graded-Risk Approach for NESHAPs Compliance                                                   | 62 |

# Lawrence Livermore National Laboratory NESHAPs 2001 Annual Report

This annual report is prepared pursuant to the National Emission Standards for Hazardous Air Pollutants (NESHAPs; Title 40 Code of Federal Regulations [CFR] Part 61, Subpart H). Subpart H governs radionuclide emissions to air from Department of Energy (DOE) facilities.

#### **SYNOPSIS**

NESHAPs limits the emission of radionuclides to the ambient air from DOE facilities to levels resulting in an annual effective dose equivalent (EDE) of 10 mrem (100  $\mu Sv$ ) to any member of the public. The EDEs for the Lawrence Livermore National Laboratory (LLNL) site-wide maximally exposed members of the public from operations in 2001 are summarized here.

- Livermore site: 0.017 mrem  $(0.17 \,\mu\text{Sv})$  (34% from point-source emissions, 66% from diffuse-source emissions). The point-source emissions include gaseous tritium modeled as tritiated water vapor as directed by EPA Region IX; the resulting dose is used for compliance purposes.
- Site 300: 0.054 mrem (0.54  $\mu$ Sv) (93% from point-source emissions, 7% from diffuse-source emissions).

The EDEs were calculated using the EPA-approved CAP88-PC air dispersion/dose-assessment model, except for doses for three diffuse sources, which were calculated from measured concentrations and dose coefficients. Site specific meteorological data, stack flow data, and emissions estimates based on radionuclide usage inventory data or continuous stack monitoring data were the specific inputs to CAP88-PC for each modeled source.

#### **SECTION I. Facilities Information**

#### **Site Description**

LLNL was established in 1952 to conduct nuclear weapons research and development. The Laboratory's mission is dynamic and has been broadened over the years to meet new national needs. LLNL serves as a national resource in science and engineering; its activities focus on global security, energy, global ecology, biomedicine, economic competitiveness, and science and mathematics education. LLNL consists of two sites—the main laboratory site located in Livermore, California (Livermore site), and the Experimental Test Facility (Site 300) located near Tracy, California. Figure 1 shows the locations of the sites. The University of California operates LLNL for DOE.

#### Livermore Site

LLNL's Livermore site occupies an area of 3.3 km<sup>2</sup> located about 60 km east of San Francisco, California, adjacent to the City of Livermore in the eastern part of Alameda County. In round numbers, 7 million people live within 80 km of the Livermore site; 75,200 of them live in the City of Livermore.

The Livermore site is located in the southeastern portion of the Livermore Valley, a topographical and structural depression oriented east-west within the Diablo Range of the California Coast Range Province. The Livermore Valley forms an irregularly shaped lowland area approximately 26 km long and an average of 11 km wide. The floor of the valley slopes from an elevation of approximately 200 m above sea level at the southwest corner.

The climate of the Livermore Valley is characterized by mild, rainy winters and warm, dry summers. The mean annual temperature is about 15°C. Temperatures typically range from –5°C during some pre-dawn hours in the winter, to 40°C on a few summer afternoons. The 2001 annual wind data for the Livermore site are displayed as a wind rose in Figure 2. Although winds are variable, the prevailing wind direction is from the southwest, especially during the summer. However, during the winter, the wind often blows from the northeast. Most precipitation occurs as rain between October and April with very little rainfall during the summer months. In 2001, the Livermore site received 339 mm of precipitation.



**Figure 1.** Locations of LLNL Livermore site and Site 300.

#### Site 300

Site 300, LLNL's Experimental Test Facility, is located 24 km east of the Livermore site in the Altamont Hills of the Diablo Range and occupies an area of 30.3 km<sup>2</sup>. It is close to another explosives-testing facility owned and operated by SRI International. A State of California vehicular-recreation area is located nearby, and wind-turbine generators line the surrounding hills. The remainder of the surrounding area is in agricultural use, primarily pasture land for cattle and sheep. The nearest residential



**Figure 2.** Wind rose showing the average annual wind speed, frequency of occurrence, and direction at the Livermore site, 2001.

area is the city of Tracy (population approximately 61,200), located 10 km to the northeast.

The topography of Site 300 is much more irregular than that of the Livermore site; it consists of a series of steep hills and ridges, which are oriented along a generally northwest/southeast trend, separated by intervening ravines. The elevation ranges from approximately 540 m in the northwestern portion of the site to 150 m at the southeast corner. The climate at Site 300 is similar to that of the Livermore site, with mild winters and dry summers. The complex topography of the site significantly influences local wind and temperature patterns, making the temperature range



**Figure 3.** Wind rose showing the average annual wind speed, frequency of occurrence, and direction at Site 300, 2001.

somewhat more extreme than at the Livermore site. The 2001 annual wind data for Site 300 are displayed as a wind rose in Figure 3. Prevailing winds are from the west-southwest. As is the case at the Livermore site, precipitation is highly seasonal, with most precipitation occurring between October and April. Site 300 received 247 mm of precipitation during 2001. The mean annual temperature is about 17°C.

#### **SECTION II. Air Emission Sources and Data**

#### **Sources**

More than a hundred different radioisotopes are used at LLNL for research purposes, including biomedical tracers, tritium, mixed fission products, transuranic isotopes, and others—see the "radionuclides" column in the Attachment 1 spreadsheet for a breakdown by facility. Radioisotope handling procedures and work enclosures are determined for each project, depending on the isotopes, the quantities being used, and the types of operations being performed. Radioisotope handling and working environments include glove boxes, exhaust hoods, and laboratory bench tops. Exhaust paths to the atmosphere range from triple HEPA (High Efficiency Particulate Air) filtered ventilation systems, to roof vents and stacks lacking abatement devices, to direct dispersal of depleted uranium during explosives testing at Site 300, to a variety of diffuse area sources.

Sources of radioactive material emissions to air at LLNL are divided into two categories for purposes of evaluating NESHAPs compliance: point sources (including stacks, roof vents, and explosive experiments conducted on Site 300's firing tables) and diffuse area sources (including dedicated waste accumulation areas and other areas of known contamination). Hazardous Waste Management's "Tank Farm" operations at Building 514 and waste storage at the Building 612 Yard, and other Livermore-site sources external to buildings, are treated as diffuse area sources. Detailed information is given in Attachment 1 for emissions from LLNL's radiological operations that took place during 2001.

## 2001 Air Monitoring

In this section we describe continuous stack-effluent sampling systems at selected LLNL facilities and ambient air monitors in place at numerous locations on and off LLNL sites.

#### Continuous Stack Air Effluent Monitoring

Actual measurements of radioactivity in air and effluent flow are the basis for reported emissions from continuously monitored sources. In 2001, there were seven buildings (Buildings 175, 177, 235, 251, 331, 332, and 491) at the Livermore site that had radionuclide air effluent monitoring systems. These buildings are listed in Table 1, along with the number of samplers, the types of samplers, and the analytes of interest. Many samplers would operate from emergency power systems if normal power were lost.

Air samples for particulate emissions are extracted downstream of HEPA filters and prior to the discharge point to the atmosphere. Particles are collected on membrane filters. The sample filters are removed and analyzed for gross alpha and beta activity

**Table 1.** Air effluent sampling locations and systems.

| Building | Facility                                           | Analytes                                                                       | Sample<br>type                     | Number of samplers |
|----------|----------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------|--------------------|
| 175      | MARS a                                             | Gross $\alpha$ , $\beta$ on particles                                          | Filter                             | 6                  |
| 177      | Extractor Test <sup>a</sup>                        | Gross $\alpha$ , $\beta$ on particles                                          | Filter                             | 1                  |
| 235      | Chemistry and<br>Materials Science                 | Gross $\alpha$ , $\beta$ on particles                                          | Filter                             | 1                  |
| 251      | Heavy Elements<br>Unhardened area<br>Hardened area | Gross $\alpha$ , $\beta$ on particles<br>Gross $\alpha$ , $\beta$ on particles | Filters<br>Filters                 | 28<br>4            |
| 331      | Tritium                                            | Tritium                                                                        | Ionization<br>Chamber <sup>b</sup> | 4                  |
|          |                                                    | Gaseous tritium/<br>tritiated water vapor                                      | Molecular sieves                   | s 4                |
| 332      | Plutonium                                          | Gross $\alpha$ , $\beta$ on particles                                          | CAMb                               | 12                 |
|          |                                                    | Gross $\alpha$ , $\beta$ on particles                                          | Filters                            | 16                 |
| 491      | Isotope Separation <sup>a</sup>                    | Gross $\alpha$ , $\beta$ on particles                                          | Filters                            | 1                  |

Note: "CAM" denotes Eberline continuous air monitors.

<sup>b</sup> Alarmed systems.

on a weekly or bi-weekly frequency depending on the facility. In most cases, simple filter aerosol collection systems are used. However, in some facilities, alpha continuous air monitors (CAMs) are used for sampling. In addition to collecting a sample of particles, the CAM units provide an alarm capability for the facility in the event of a release of alpha activity.

Detection of gross alpha and beta activity resulting from particles collected on the air filters is accomplished using gas flow proportional counters. Analysis is delayed for at least four days from the end of sample collection to allow for the decay of naturally occurring radon daughters. For verification of the operation of the counting system, calibration sources, as well as background samples, are intermixed with the sample filters for analysis. Analysis is performed by the Radiological Measurements Laboratory (RML) in the Hazards Control Department (HCD).

Each stack of the Tritium Facility (Building 331) is monitored for tritium release by both an alarmed continuous monitoring system and by molecular sieve continuous samplers. The alarmed monitors, which are Overhoff ion chambers, provide real

<sup>&</sup>lt;sup>a</sup> Operations discontinued, however, air effluent sampling systems at this building continue to operate as part of the maintenance and surveillance shutdown plan for AVLIS facilities

time tritium concentration release levels (HT, HTO, or other gaseous forms). The sieve samplers discriminate between tritiated water (HTO) vapor and molecular tritium (HT); they provide the values used for environmental reporting and are exchanged weekly. Each sieve sampler (not alarmed) is in parallel with an alarmed monitor and consists of two molecular sieves. The first sieve collects tritiated water vapor; the second sieve contains a palladium-coated catalyst that converts molecular tritium to tritiated water, which is then collected. The molecular sieve samples are submitted to the Hazards Control Analytical Laboratory where they are put into a recovery system for the bake out of tritiated water vapor and subsequent condensation and collection of the water. The retrieved tritiated water is analyzed by RML using liquid scintillation counting techniques.

Data from air particulate sampling filter and molecular sieve analyses are reviewed by Hazards Control Department Health Physicists responsible for each facility and an Environmental Protection Department Environmental Analyst.

**Results of Stack Monitoring for Tritium:** Operations in the Tritium Facility (Building 331) in 2001 released a total of 20 Ci  $(7.4 \times 10^{11} \text{ Bq})$  of tritium. Of this, approximately 18.3 Ci  $(6.8 \times 10^{11} \text{ Bq})$  were released as tritiated water (HTO). The remaining 8.5% of the tritium released, 1.7 Ci  $(6.4 \times 10^{10} \text{ Bq})$ , was elemental tritium gas (HT). The highest single weekly stack emission from the facility was 0.67 Ci  $(2.5 \times 10^{10} \text{ Bq})$ , of which 0.64 Ci  $(2.4 \times 10^{10} \text{ Bq})$  was HTO.

Building 331 tritium emissions, as measured by stack monitoring, remained considerably lower in 2001 than emissions that occurred during the 1980s. The reduced emissions in 2001 were primarily the result of a reduction in programmatic work compared to the previous years. Over the next five years, an increasing trend in emissions may occur as research and development work is performed for new programmatic efforts. However, engineered controls designed to contain and recapture tritium leakage should maintain relatively low emissions. Figure 4 illustrates the combined HTO and HT emissions from the facility since 1981.

Stack Monitoring for Gross Alpha and Gross Beta Radiation: For most discharge points at the other facilities where continuous stack sampling is performed, the results are below the minimum detectable concentration (MDC) of the analysis; sometimes as few as 1 to 4 samples (out of 25 to 50 per year) have concentrations greater than the MDC. Generally, these few samples having results above the MDC are only marginally above the MDC. Use of zero values for this type of data can be justified based on knowledge of the facility, the use of tested, multiple stage, HEPA filters in all significant release pathways, and alpha spectroscopy based isotopic analyses of selected air sampling filters. These isotopic analyses demonstrate that detected activity on air sampling filters comes from

naturally occurring radionuclides, such as radon daughters, e.g., polonium, on the air sampling filters. In addition, because of exhaust configurations at some facilities, the monitoring systems sometimes sample air from the ambient atmosphere along with the HEPA filtered air from facility operations, giving rise to background atmospheric radioactivity being collected. Because of these considerations, the emissions from such facility operations are reported as zero. Consequently, there are no dose consequences, and doses reported for these operations are also zero. Furthermore, even if the MDC values are used in calculations of the emission estimates for these facilities, which would be an extremely conservative approach, the total dose attributable to LLNL activities is not significantly affected. None of the facilities monitored for gross alpha and beta had emissions in 2001.



**Figure 4.** Combined HT and HTO emissions from the Tritium Facility, 1981–2001, distinguishing between chronic releases during normal operations (black bars) and acute accidental releases (gray bars). Accidental releases are predominantly HT gas.

#### Air Surveillance Monitoring for Radioactive Particles and Gases

Surveillance air monitoring for tritium and radioactive particles has been in place since the 1970s and will continue. LLNL currently maintains seven continuously operating, high volume, air particulate samplers on the Livermore site, nine in the Livermore Valley, eight at Site 300, and one in Tracy. LLNL also maintains twelve continuously operating tritiated water vapor samplers on the Livermore site, six

samplers in the Livermore Valley and one at Site 300. The samplers are positioned to ensure reasonable probability that any significant airborne concentration of particulate or tritiated water vapor effluents resulting from LLNL operations will be detected. Many of the surveillance air monitors are placed near diffuse emission sources, such as those near Buildings 292, 331, 514, and 612, as well as in and around the Southeast Quadrant of the Livermore site. As such, their results can be used to estimate and/or confirm the emissions from the associated diffuse sources. Also included is an air particulate monitor positioned at the location of the hypothetical maximally-exposed member of the public (defined in Section III) for the Livermore site. Data from air surveillance monitors provide a valuable test of predictions based on air dispersion modeling, and can help characterize unplanned releases of radioactive material.

The data from the ambient air monitoring network provide continuous measurements of the concentrations of radionuclides present in the air at the Livermore site, Site 300, and in the surrounding areas. Data from the network are presented in the LLNL Site Annual Environmental Report, which is available to the public in bound hardcopy form and on the Internet. (See, e.g., Biermann et al., *Environmental Report 2000*, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50027-00, September 2001; http://www.llnl.gov/saer).

Recognition of Need to Apply Correction Factors to Results of Tritium Surveillance Air Monitoring: Recently it was shown that measured tritium concentrations obtained using a method involving the extraction of water from silica gel—a method used at LLNL since 1973— are in error and require upward correction. It is important to note that this correction, while affecting the concentrations of tritium in ambient air quoted in LLNL's environmental reports, does not significantly change the doses to the public quoted in those reports. Only for the special case of a diffuse tritium source having emissions inferred from monitoring data does the correction change the inferred dose for that particular source. Doses to the public attributed to tritium emissions from the pair of 30-meter-high stacks of the Tritium Facility, in particular, are not affected.

The Environmental Monitoring Radiological Laboratory of the Analytical and Nuclear Chemistry Division at LLNL developed a correction factor that applies to all measured tritium concentrations obtained by this method (Guthrie, E.B., et al., "Isotope exchange and fractionation corrections for extraction of tritiated water in silica gel by freeze-drying techniques," LLNL draft report, Sept. 2001). The correction factor was developed based on new understanding of the properties of silica gel (Rosson, R., et al., "Isotopic exchange and the vapor pressure isotope effect in tritium oxide adsorption on silica gel.," J. Phys. Chem. B102:10342-10346, 1998; Rosson, R., et al., (2000), "Correcting tritium concentrations in water vapor monitored with silica gel," Health Physics 78(1):68-73). Put simply, the

concentration of tritium measured in water extracted from the silica gel has been found to be lower than the concentration of the air moisture absorbed by the silica gel. This phenomenon occurs because tritium from ambient air exchanges with water bound in the silica gel that cannot be removed by the drying process. The bound water fraction is about 5 or 6% by weight depending upon the type of silica gel. The magnitude of the correction depends upon the amount of water collected compared with the amount of exchangeable water bound in the silica gel and is specific to the silica gel used by LLNL. For 2001, the average correction factor was 1.6 (range of 1.3 to 2.3, with 97% of the correction factors being less than 1.9). The correction factor was applied to each sample based upon the amount of water collected and the initial weight of the dry silica gel.

An illustration of the quantitative effect produced by these corrections annually over the period 1997-2000 is given in Section VIII, in the subsection comparing modeled results to measured concentrations of tritium in air at a dozen surveillance air monitor locations on or near the Livermore site.

As a note of clarification, while the silica gel correction factors apply to measured concentrations of tritium in ambient air, they do not apply to results of air effluent monitoring of the Tritium Facility stacks, since the molecular sieve material used in the stacks does not contain silica gel. Of course, these correction factors also have no effect on results calculated using the tritium models in CAP88-PC, NEWTRIT, or other codes; these models are not based on or coupled with any particular measurement method.

### **Radionuclide Usage Inventory Update**

A "partial" accounting of LLNL's radiological emission sources was made in 2001, in accordance with the allowance by EPA that a 100% accounting need be made only every third year. The previous year, when reviewing and reporting on operations conducted in 2000, a 100% accounting was made.

The partial accounting focused on sources in four categories: (1) the group of sources that collectively (in a ranked list) accounted for at least 90% of the dose to the maximally-exposed public individual from both the Livermore site and Site 300 in the previous year's (2000) assessment; (2) all "new" sources, i.e., those that commenced emissions in 2001, or sources that showed significantly elevated releases over 2000 levels; (3) all monitored sources; and (4) all sources in the major LLNL waste stream dealt with by Hazardous Waste Management (HWM).

Radionuclide usage inventory forms, with guidance for completing them, were sent to all assurance managers, facility managers, and project-responsible persons connected with activities meeting these criteria for our partial accounting. The forms were completed by experimenters, and certified by facility managers. In particular,

radionuclide usage data for all Site 300 explosives experiments and all significant stack and diffuse sources at both sites were included in this update.

### **SECTION III. Dose Assessment Methods & Concepts**

#### **Description of the Air Dispersion and Dose Model**

Most estimates of individual and collective radiological doses to the public from LLNL operations were obtained using the EPA-developed computer code CAP88-PC. An LLNL- modified version of this code (designated CAP88-PC-T), which contains an improved tritium model (not yet approved by EPA for use in regulatory compliance evaluations), was also used for purposes of comparison. The four principal pathways—internal exposures from inhalation of air, ingestion of foodstuff and drinking water, external exposures through irradiation from contaminated ground, and immersion in contaminated air—are evaluated by CAP88-PC. The doses are expressed as whole-body effective dose equivalents (EDEs), in units of mrem/y (1 mrem =  $10 \,\mu Sv$ ). Separate doses for Livermore site and Site 300 emissions are reported.

Three potential doses are emphasized: (1) The dose to the site-wide maximally exposed individual (SW-MEI), which combines the effects of all emission points, for comparison to the 10 mrem/y (100  $\mu$ Sv/y) standard; (2) the maximum dose to any member of the public (assumed to be at the LLNL fence line), in any direction, due to each unabated emission point on the site to determine the need for continuous monitoring; and (3) the collective dose to populations residing within 80 km of the two LLNL sites, adding the products of individual doses received times the number of people receiving them.

#### Summary of Model Input Parameters

**General Model Inputs:** Attachment 1 details the key identifiers and input parameters for the CAP88-PC model runs. These include building number; stack ID; isotope(s); emission rate in curies per year (1 Ci =  $3.7 \times 10^{10}$  Bq); and stack parameters, including height, diameter, and emission velocity.

**Meteorological Data:** All model runs used actual 2001 Livermore-site and Site 300 meteorological data, collected from the meteorological towers for each site. At these towers, wind speed and direction are sampled every few seconds, temperature sampled every minute, and all are averaged into quarter-hour increments, time tagged, and computer recorded. The data are converted into a CAP88-PC input wind file using EPA guidelines.

**Surrogate Radionuclides:** CAP88-PC contains a library of 265 radionuclides; however, it does not contain all the radionuclides in use at LLNL. As a consequence, it was necessary in a few cases to use surrogate radionuclides to estimate EDEs.

Attachment 2 shows the surrogate radionuclides used in CAP88-PC. The selection of a suitable surrogate is based upon several criteria, including metabolically similar behavior and similar modes of decay and decay energies of the radiation type of the isotope of interest. Once a surrogate is selected, the equivalent source term is adjusted by the product of the initial inventory of the isotope of interest and the ratio of the effective dose equivalent of the surrogate to that of the isotope of interest. In some cases, experimenters did not have isotopic analyses of mixtures of radionuclides, and they identified the radionuclides used as "gross alpha," "gross beta," "gross gamma," or "mixed fission products" (MFP). In these cases, <sup>239</sup>Pu was used as the surrogate for gross alpha, <sup>137</sup>Cs was used as the surrogate for gross gamma, and <sup>90</sup>Sr was used as the surrogate for gross beta and mixed fission products to provide conservative dose estimates.

**Population Inputs:** Population distributions centered on the two LLNL sites were compiled from the LandScan Global Population 1998 Database developed by Dr. Jerome Dobson at Oak Ridge National Laboratory. The population data files (distribution of population with distance and direction) used in the 2001 modeling effort are the same as those described in last year's NESHAPs annual report (*LLNL NESHAPs* 2000 *Annual Report*, Gallegos et al., June 2001).

Land Use and Agricultural Inputs: Options for model inputs regarding agricultural characteristics and land use are established by the EPA, and the particular designation selected can strongly influence the ingestion dose received by the population being evaluated. The "user entered" option was again selected for the CAP88-PC modeling effort for 2001. The values entered corresponded to the "local agriculture" option (i.e., everything is home produced), with one exception—all milk consumed was assumed to be imported for individual dose assessment. The assumption that all milk comes from local cows is not supported by the agricultural activities conducted in the area. For population dose assessments, all food is considered to be locally grown, which means grown within an 80 km radius about the site; default densities of agricultural products in California are used.

**Emission Source Terms**: The source term for each emission point in the calculations was determined by one of two methods: For continuously monitored sources, the sampling data (curies released per unit time) for each radionuclide were used directly. For unmonitored facilities, the radionuclide usage inventories, together with time factors and EPA-specified physical state factors, are used to estimate the potential emissions to air from a source. The time factors are used to adjust for the fact that the radionuclide may not always be in the same facility all year or may be encapsulated or enclosed for a substantial part of the year. The time factors are chosen to allow a reasonable estimate of the amount of radioactive material that may potentially be released into the atmosphere. The EPA-specified factors for potential release to air of materials in different physical states (solid,

liquid, powder, or gas) are those stated in 40 CFR Part 61, Appendix D. If the material was an unconfined gas, then the factor 1.0 was used; for liquids and powders,  $1.0 \times 10^{-3}$  was used; and for solids,  $1.0 \times 10^{-6}$  was used. The U.S. EPA has granted approval for LLNL to use alternative physical state factors for elemental uranium, uranium/niobium alloy, and elemental plutonium. Table 2 provides the approved temperatures for application of the physical state factor for each material.

These factors are allowed provided that the material is not intentionally dispersed to the environment and that the processes do not alter its chemical form. The physical state dependent release fraction and the time factor are used to adjust (by multiplication) the total annual usage inventory to yield the potential annual release to air. In addition, emission control abatement factors (40 CFR 61, Appendix D), when applicable, were applied. Each HEPA filter stage was given a 0.01 abatement factor. (However, abatement factors were not used to evaluate compliance with the 0.1 mrem [1  $\mu$ Sv] standard that determines the need for continuous monitoring at a facility.) The use of actual stack effluent sampling data is much more direct, and presumably more accurate, than using assumptions based on usage inventory, time factors, release fractions, and emission control factors.

**Table 2.** List of materials exempted from the "treat as a gas above 100°C rule," and temperatures at which the various physical state factors apply.

| Material              | Solid physical state factor | Liquid physical<br>state factor | Gas Physical state factor | Year<br>Approved |
|-----------------------|-----------------------------|---------------------------------|---------------------------|------------------|
| Elemental uranium     | <1100°C                     | Between 1100°C and 3000°C       | >3000°C                   | 1996             |
| Uranium/niobium alloy |                             | <1000°C                         | Between 1100°C and        |                  |
| 3000°C                | >3000°C                     | 2001                            |                           |                  |
| Elemental plutonium   | n <600°                     | Between 600°C and 3000°C        | >3000°C                   | 2001             |

**Site-Wide Maximally Exposed Individual:** For LLNL to comply with the NESHAPs regulations, the LLNL site-wide maximally exposed individual cannot receive an EDE greater than 10 mrem/y  $(100~\mu Sv/y)$ . The site-wide maximally exposed individual (SW-MEI) is defined as the *hypothetical* member of the public at a single residence, school, business, or office who receives the greatest LLNL induced EDE from the combination of all radionuclide source emissions, as determined by modeling.

At the Livermore site, the SW-MEI for 2001 was found, as usual, to be located at the UNCLE Credit Union, about 10 m outside the controlled eastern fence line of the site, but about 10 m within the perimeter of the site property, as shown in Figure 5. At Site 300, the 2001 SW-MEI was again, as in the previous year, located at the boundary with the Carnegie State Vehicle Recreation Area, managed by the

California Department of Parks and Recreation, approximately 3.2 km south southeast of the firing table at Building 851, as shown in Figure 6.



**Figure 5.** Location of Site-Wide Maximally Exposed Individual (SW-MEI) at the Livermore site, 2001.

In the Attachment 1 spreadsheet, the distance and direction to the respective SW-MEI are shown for each facility at each site. Doses to the site specific SW-MEIs were evaluated for each source and then totaled for site specific evaluations against the  $10 \text{ mrem/y} (100 \, \mu\text{Sv})$  dose standard (see "Total Dose Estimate" in Section IV).

**Maximally Exposed Public Individual:** To assess compliance with the EPA requirement for continuous monitoring of a release point (potential dose greater than  $0.1 \text{ mrem/y} [1.0 \, \mu\text{Sv/y}]$ ), emissions must be individually evaluated from each point source; the location of the maximally exposed public individual (MEI) is generally different for each emission point. The maximum dose at a location of

unrestricted public access typically occurs at a point on the site perimeter. Therefore, it is often referred to as the maximum "fence line" dose, although the off-site maximum dose could occur some distance beyond the perimeter. (This could happen, e.g., when a stack is close to the perimeter; however, for all emission points at the Livermore site and Site 300, calculations show that ground level concentrations of radionuclides generally decline continuously beyond LLNL boundaries.) As stipulated by the regulations in 40 CFR Section 61.93 (b)(4)(ii), modeling for assessment of continuous monitoring requirements assumed unabated emissions (i.e., no credit was taken for emission abatement devices, such as filters). The Attachment 1 spreadsheet provides, for each point source, the dose to the MEI and the distance and direction to the LLNL fence line where the MEI is located.



**Figure 6.** Location of Site-Wide Maximally Exposed Individual (SW-MEI) at Site 300, 2001.

#### Special Modeling Challenges

Among the sources at LLNL, explosives tests using depleted uranium at Site 300 and diffuse sources at both sites required special attention.

**Site 300 Explosives Experiments:** Some of the assemblies for Site 300 explosives experiments contain depleted uranium (DU) and possibly other radioactive materials. (The radioactive material does not contribute to the explosive energy, which is entirely chemical in origin.) The explosives assemblies are placed on an open-air firing table and detonated. Only limited data are available to characterize the initial state of the cloud of explosive decomposition products created by the detonation because properties of the cloud are not routinely measured in the experiments. Empirical scaling laws can be used, however, to define the size and height of the cloud using explosives inventories. When the assembly contains DU, the three uranium isotopes with atomic weights 238, 235, and 234 are assumed to occur in the cloud in the weight percentages 99.8, 0.2, and  $5 \times 10^{-4}$ . Their masses are multiplied by their specific activities to determine the total activity for each isotope in the cloud. For simplicity, it is assumed that all the uranium is dispersed as a gaseous cloud, and that the median particle size is the CAP88-PC default value of 1 μm. The assumption that all uranium is aerosolized and dispersed as a cloud results in a highly conservative off-site dose estimation—we believe a more realistic release-to-air fraction for the uranium is no greater than 0.2, but we lack sufficient data to use a value other than 1.0. CAP88-PC simulates each shot as a low level, steady state, stack-type emission occurring over one year. An alternative modeling methodology for treating these short duration explosive events, based on a "puff" code, was submitted to EPA for approval in 1992, but LLNL was directed to use the CAP88-PC code for these calculations.

**Diffuse Sources:** Diffuse emissions generally arise from extended-area sources external to buildings. Such sources are difficult to quantify. At present there are no EPA-mandated methods for estimation or measurement of diffuse sources; dose calculations associated with this type of source are left to the discretion of the DOE facility. Dose assessments for Livermore-site and Site 300 diffuse sources are variously derived based on radionuclide usage inventory data, environmental surveillance monitoring data, samples of contaminated materials, and other methods. The doses from principal diffuse sources in 2001 are described below in Section VIII.

#### Modeling Documentation

Dose assessment modeling runs were conducted for all sources (point and diffuse) meeting the criteria of the reduced accounting for 2001. The model used was EPA's CAP88-PC code (see Section III). Files were incorporated for meteorological data (wind, precipitation, and temperature) and population data representing both sites,

along with the 2001 radionuclide usage inventory or stack effluent monitoring data. Annual dose is reported as whole-body EDE expressed in units of mrem (followed by  $\mu Sv; 1$  mrem = 10  $\mu Sv)$ . Copies of individual model runs, including input parameters and resultant calculated doses, are on file with the Terrestrial & Atmospheric Monitoring & Modeling Group (TAMM) of the Environmental Protection Department at LLNL.

# SECTION IV. Results of 2001 Radiological Dose Assessment

This section summarizes the doses to the most exposed public individuals from LLNL operations in 2001, shows the temporal trends and comparison to previous years, presents the potential doses to the populations residing within 80 km of either the Livermore site or Site 300, and summarizes LLNL's compliance with 40 CFR 61, Subpart H (61.93).

## **Total Dose to Site-Wide Maximally Exposed Individuals**

For the Livermore site, the dose calculated for the SW-MEI from diffuse emissions in 2001 totaled 0.011 mrem (0.11  $\mu Sv)$ . The dose due to point sources was 0.0056 mrem (0.056  $\mu Sv)$ . When combined, the total annual dose was 0.017 mrem (0.17  $\mu Sv)$ , 66% from diffuse and 34% from point sources. The point source dose includes Tritium Facility HT emissions modeled as HTO, as directed by EPA Region IX. The SW-MEI dose calculated using NEWTRIT for tritium emissions from both point and diffuse sources at the Livermore site was 0.013 mrem (0.13  $\mu Sv)$ .

The total dose to the Site 300 SW-MEI from operations in 2001 was 0.054 mrem (0.54  $\mu$ Sv). Point source emissions from firing table explosives experiments accounted for 0.050 mrem (0.50  $\mu$ Sv), or 93%, of this total, while 0.0037 mrem (0.037  $\mu$ Sv), or about 7%, was contributed by diffuse sources.

Table 3 shows the facilities or sources that accounted for more than 90% of the doses to the SW-MEI for the Livermore site and Site 300 in 2001. Although LLNL has nearly 200 sources with potential for releasing radioactive material to air according to NESHAPs prescriptions, most are very minor. Nearly the entire radiological dose to the public from LLNL operations comes from no more than a dozen sources.

A comparison of 2001 doses with those of previous years is provided by Table 4. No diffuse emissions were reported at Site 300 for years before 1993, so comparison of total Site 300 dose can only be made for 1993 and later. In addition, diffuse source doses were not reported separately from the total dose for the Livermore site for 1990 and 1991.

#### **Doses from Unplanned Releases**

There were no unplanned atmospheric releases of radionuclides at the Livermore site or Site 300 in 2001.

**Table 3.** List of facilities or sources whose emissions accounted for more than 90% of the SW-MEI doses for the Livermore site and Site 300 in 2001.

| Facility (source category)               | CAP88-PC<br>Dose in<br>mrem/y | CAP88-PC<br>Percentage<br>contribution to total<br>dose |
|------------------------------------------|-------------------------------|---------------------------------------------------------|
| Livermore site                           |                               |                                                         |
| Building 612 Yard (diffuse source)       | 0.0082*                       | 48%                                                     |
| Building 331 stacks (point source)       | 0.0043*                       | 25%                                                     |
| Building 514 Tank Farm (diffuse source)  | 0.0013                        | 8%                                                      |
| Southeast Quadrant (diffuse source)      | 0.00088                       | 5%                                                      |
| Building 612, R102 (point source)        | 0.00062                       | 4%                                                      |
| Building 514 Evaporator (point source)   | 0.00058                       | 3%                                                      |
| Site 300                                 |                               |                                                         |
| Building 851 Firing Table (point source) | 0.050                         | 93%                                                     |
| Soil resuspension (diffuse source)       | 0.0037                        | 7%                                                      |

<sup>\*</sup> When LLNL's NEWTRIT model (see Section VIII, subsection on "Modeling dose from tritium") is used in CAP88-PC in place of CAP88-PC's default tritium model, the doses for Building 612 yard and Building 331stacks become 0.0061 mrem and 0.0031 mrem, respectively, and their percentages of the total dose from Livermore site operations each drop by 1%.

### **Population Doses**

Population doses, or collective EDEs, for both LLNL sites were calculated out to a distance of 80 km in all directions from the site centers using CAP88-PC. As noted earlier, CAP88-PC evaluates the four principal exposure pathways: ingestion through food and water consumption, inhalation, air immersion, and irradiation by contaminated ground surface.

Population centers affected by LLNL emissions include the relatively nearby communities of Livermore and Tracy, the more distant metropolitan areas of Oakland, San Francisco, and San Jose, and the San Joaquin Valley communities of Modesto and Stockton. Within the 80 km outer distance specified by DOE, there are 6.9 million residents included for the Livermore site population dose determination, and 6.0 million for Site 300. Population data files (distribution of population with distance and direction) used for the present report were the same as in the previous year; see Tables 7 and 8 in *LLNL NESHAPs* 2000 *Annual Report* (Gallegos et al. 2001).

The CAP88-PC result for potential population dose attributed to 2001 Livermore-site operations was 0.16 person-rem (0.0016 person-Sv). This amount is less than typical,

primarily because the stack releases from the Tritium Facility were unusually low in 2001. The corresponding collective EDE from Site 300 operations in 2001 was 9.4 person-rem (0.094 person-Sv). This value, while within the normal range seen from year to year, exceeds by almost four times the 2.5 person-rem (0.025 person-Sv) for 2000, as a result of increased firing table activity.

These population doses can be compared to the collective dose from natural background radioactivity for 6.9 million people of  $2.1 \times 10^6$  person-rem ( $2.1 \times 10^4$  person-Sv).

**Table 4.** Doses (in mrem) calculated for the Site-Wide Maximally Exposed Individual (SW-MEI) for the Livermore site and Site 300, 1990 to 2001.

| Year           | Total Dose | Point Source Dose   | Diffuse Source Dose |
|----------------|------------|---------------------|---------------------|
| Livermore site |            |                     |                     |
| 2001           | 0.017 a    | 0.0057 <sup>a</sup> | 0.011               |
| 2000           | 0.038 a    | 0.017 a             | 0.021               |
| 1999           | 0.12 a     | 0.094 a             | 0.028               |
| 1998           | 0.055 a    | 0.031 a             | 0.024               |
| 1997           | 0.097      | 0.078               | 0.019               |
| 1996           | 0.093      | 0.048               | 0.045               |
| 1995           | 0.041      | 0.019               | 0.022               |
| 1994           | 0.065      | 0.042               | 0.023               |
| 1993           | 0.066      | 0.040               | 0.026               |
| 1992           | 0.079      | 0.069               | 0.010               |
| 1991           | 0.234      | <u></u> b           | <b>—</b> b          |
| 1990           | 0.240      | <b>—</b> b          | <b>—</b> b          |
| Site 300       |            |                     |                     |
| 2001           | 0.054      | 0.050               | 0.0037              |
| 2000           | 0.019      | 0.015               | 0.0037              |
| 1999           | 0.035      | 0.034               | 0.0012              |
| 1998           | 0.024      | 0.019               | 0.005               |
| 1997           | 0.020      | 0.011               | 0.0088              |
| 1996           | 0.033      | 0.033               | 0.00045             |
| 1995           | 0.023      | 0.020               | 0.003               |
| 1994           | 0.081      | 0.049               | 0.032               |
| 1993           | 0.037      | 0.011               | 0.026               |
| 1992           | 0.021      | 0.021               | —с                  |
| 1991           | 0.044      | 0.044               | —с                  |
| 1990           | 0.057      | 0.057               | —с                  |

<sup>&</sup>lt;sup>a</sup> The dose includes HT emissions modeled as HTO as directed by EPA Region IX. EPA Region IX acknowledges that such modeling results in a conservative overestimation of the dose. This methodology is used for purposes of compliance.

b Diffuse source doses were not reported separately from the total dose for the Livermore site for 1990 and 1991.

<sup>&</sup>lt;sup>c</sup> No diffuse emissions were reported at Site 300 for years before 1993.

### Compliance with 40 CFR 61 Subpart H (61.93)

Calculations of effective dose equivalents for Livermore-site and Site 300 facilities having the potential to release radioactive material to the atmosphere were found to be well below the 10 mrem (100  $\mu$ Sv) NESHAPs dose standard for dose to the most-exposed individual members of the public. Tritium accounted for more than three-quarters of the Livermore-site calculated dose, while at Site 300 practically the entire calculated dose was due to the isotopes <sup>238</sup>U, <sup>235</sup>U, and <sup>234</sup>U, in depleted uranium.

In 2001, there were seven buildings (Buildings 175, 177, 235, 251, 331, 332, and 491) at the Livermore site that had radionuclide air effluent monitoring systems. These buildings are listed in Table 1, along with the number of samplers, the types of samplers, and the analytes of interest.

LLNL is committed to monitoring stack effluent air from its Tritium Facility (Building 331), Plutonium Facility (Building 332), and the seismically hardened area of its Heavy Element Facility (Building 251). In addition, other facilities are continuously monitored, as necessary, based on evaluations of potential emissions without control devices, as in the case of Building 235, or where classification or other issues prevent a usage-inventory-based evaluation.

# **SECTION V. Certification**

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

| Ü                                                              |                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name:                                                          | Dennis K. Fisher<br>Associate Director<br>Safety, Security, and Environmental Protection<br>Lawrence Livermore National Laboratory<br>7000 East Avenue, L-668<br>Livermore, CA 94550                                                                                                                                                                                               |
| Signature:                                                     | Dennis K. Fisher                                                                                                                                                                                                                                                                                                                                                                   |
| the informati<br>immediately<br>information i<br>penalties for | er penalty of law that I have personally examined and am familiar with on submitted herein, and based on my inquiry of those individuals responsible for obtaining the information, I believe that the submitted s true, accurate, and complete. I am aware that there are significant submitting false information, including the possibility of fine and at. See 18 U.S.C. 1001. |
| Name:                                                          | Phillip Hill Director, Livermore Safety Oversight Division U.S. Department of Energy Livermore Site Office 7000 East Avenue, L-293 Livermore, CA 94550                                                                                                                                                                                                                             |
| Signature:                                                     | Distribution 11:11                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                | Phillip Hill                                                                                                                                                                                                                                                                                                                                                                       |

# **SECTION VI. Supplemental Information on New Projects and Facilities**

#### **NESHAPs Responsibilities of LLNL Programs/Projects**

Proposed facilities and significantly modified operations are assessed for NESHAPs requirements during the National Environmental Policy Act (NEPA) review process. Under NEPA, all proposed projects or actions that might involve NESHAPs issues or concerns—not just pertaining to radionuclides but to toxic air contaminants as well—are reviewed and evaluated. If the proposal includes operations that require a NESHAPs assessment, necessary modeling is conducted. If insufficient information is available for modeling at the time the NEPA documents are prepared, LLNL includes in the NEPA documents a statement that NESHAPs review, modeling, and monitoring requirements will be met. It is the responsibility of the individual project proponent to supply the specific information required for any NESHAPs modeling, analysis, and review that must be completed before operations described in the document are initiated.

Air quality compliance requirements are spelled out in the ES&H Manual, Vol. III, Part 31.1, "Air Quality Compliance." For example, Sec. 4.0 in Part 31.1 on "Radioactive Air Pollutants" states the responsibilities, directs the project to contact TAMM Group for guidance and assistance, and gives an eleven-step list under Sec. 4.3, "Process for Compliance."

# **Major New Facilities**

Three new LLNL facilities are currently under development. All of these were assessed prior to construction for compliance with NESHAPs. Effluent sampling systems are planned for all three. These facilities are the Contained Firing Facility (CFF) at Site 300, and the Decontamination Waste Treatment Facility (DWTF) and the National Ignition Facility (NIF) at the Livermore site.

The CFF project allows containment of some explosives tests currently conducted outdoors at Site 300's Building 801. The CFF project consists of an enclosed firing chamber, a support facility, and a diagnostic equipment facility. Construction of CFF is complete, and the facility began operations with non-radiological materials in February 2002. Operations using experiments with depleted uranium commenced in March 2002. Temporary stack monitors for radioactive particulate emissions have been installed; permanent monitors should be put in place during 2002.

The DWTF is a waste handling facility that will have improved air emissions controls and will enable the handling of additional waste streams. Phase I construction (site preparation and installation of underground utilities) has been completed. Construction of the solid waste processing building, the storage building, and the

office building were completed in 1998. Construction of the building housing the stack, air handling systems and liquid waste processing operations began in December 1999, following the issuance of the Resource Conservation and Recovery Act (RCRA) Hazardous Waste Facility permit from the State of California. The DWTF stack will be monitored for tritium and radioactive particulate emissions. It is anticipated that operations will commence in 2002.

The National Ignition Facility (NIF) will contain the world's largest laser, a research tool allowing scientists to recreate on earth conditions equivalent to the center of the sun. The NIF will focus 192 extremely powerful laser beams onto a BB-sized capsule of deuterium and tritium, forcing the two heavy isotopes of hydrogen to combine through compression and heating, producing ignition and self-sustained fusion burn. The NIF construction project began in 1996 and the conventional facility construction is more than 95% complete. Eighty percent of the large components of the beam path infrastructure have been procured and are either on site or on the way. Installation of this hardware has begun. The NIF Target Chamber has been set in position, vacuum leak-checked and is now ready for beampath infrastructure, utilities and diagnostics hardware. NIF is being designed, built and operated by a team from Lawrence Livermore, Los Alamos and Sandia National Laboratories and the University of Rochester. The NIF stack will be monitored for tritium emissions. NIF construction progress is the subject of a web page found at http://www.llnl.gov/nif/construction/index.html.

### **SECTION VII. NESHAPs QA/QC Activities**

#### **NESHAPs Quality Assurance (QA) Program**

The LLNL NESHAPs quality assurance program is a multi-organizational effort that is described in the *Lawrence Livermore National Laboratory Quality Assurance Project Plan for National Emission Standards for Hazardous Air Pollutants (NESHAPs)*, 40 CFR 61, Subpart H (QAPP—Hall, L.C. and A.H. Biermann, UCRL-ID-13914, 2000). The QAPP is structured in the manner prescribed for quality assurance programs that is outlined in Appendix B, Method 114 of 40 CFR 61. The QAPP describes the organization structure and functional responsibilities, objectives of the quality assurance program, administrative controls in place for handling sample collection systems, sample collection and effluent flow rate measurement systems, corrective actions, and reporting.

The major components of this multi-organizational effort are the LLNL facilities/programs that have continuous monitoring systems, the Radiological Measurements Laboratory (RML) and the Analytical Laboratory (AL), both in the Hazards control Department (HCD), and the Environmental Protection Department (EPD). In addition to the QAPP, NESHAPs Agreement of Roles and Responsibilities (NARRs) documents are in place between EPD and the facilities and/or programs and HCD; these NARRs formalize responsibilities and obligations of the organizations regarding many tasks for the air effluent sample network. Tasks that are addressed in the NARRs include air sampler design and installation, procedures and their implementation, sampling, sample analysis and tracking, maintenance and repair of sampling systems, guidance on regulatory requirements, documentation of the sampling network, reporting, and the archival of records.

EPD is responsible for an annual assessment and demonstration of LLNL's compliance with NESHAPs. The Department operates under a Quality Assurance Management Plan and associated procedures and guidance documentation. The Terrestrial and Atmospheric Monitoring and Modeling Group (TAMM) of EPD is responsible for environmental monitoring; air dispersion and dose assessment modeling; assessment (in cooperation with Laboratory Program personnel) of usage and potential release of radioactive materials to air in operations throughout the Laboratory, and reporting to EPA and DOE/OAK to demonstrate the Laboratory's compliance with NESHAPs. Detailed records are kept of all measurements, CAP88-PC model runs, and calculations, and selected model runs are validated. The TAMM group is informed of proposed new operations, and modified operations where significant changes in radiological usage inventories occur, by several mechanisms. These mechanisms include the review of National Environmental Policy Act (NEPA) documentation, review of facility specific safety procedures and plan, review of LLNL Integrated Safety Management System

documentation, and representation on Environmental Support Teams. All NESHAPs evaluations and calculations, along with supporting information, are archived for at least the period of time specified in 40 CFR 61 Subpart H.

# Quality Control (QC) for 2001 Radiological Usage Inventory and Modeling

Of the three-dozen potential sources for which emissions were estimated in the reduced accounting for 2001, approximately 15% were selected for validation, which entails confirmation of both the source emission data and dose modeling calculations. Two sources (one from each of the two LLNL sites) were selected because they represent the most significant contributions to 2001 potential dose to the public; two additional sources were selected as representative of radiological activities in HWM and Chemistry and Materials Sciences (C&MS); and one significant diffuse source was selected. Specifically, the sources chosen for quality control review were the following: the Tritium Facility's two 30-m stacks; one explosives experiment conducted at Site 300's Firing Table 851; HWM's Building 514 Evaporator; Chemistry and Materials Science's Building 151, Room 1241; and the Building 612 Yard waste storage area.

More broadly, the quality and accuracy of our accounting and inventory processes were checked in several ways. In the accounting of new sources, more than 200 NEPA documents were examined as they arose over the course of the year and reexamined collectively at year's end to identify all new 2001 projects having potential to release radioactive material to air. Additionally, all Radioactive Materials Management Areas new to 2001 were inventoried. The data characterizing the principal source at each site (principal in terms of producing the greatest potential dose to the public) were double checked. Finally, each radiological inventory form returned by the programs was scrutinized for consistency and evident errors as it was compiled and entered into the spreadsheet, Attachment 1. Based on these QC efforts, we believe that the data presented in Attachment 1 meets EPD's quality assurance objectives.

# Proposal to EPA for use of a Graded-Risk Approach for NESHAPs Compliance

In 2001 LLNL made a proposal to EPA Region IX, for use of a graded-risk approach for demonstrating NESHAPs compliance. This proposal and EPA's response in rejecting it are reproduced in Attachment 3.

# SECTION VIII: Supplementary Information on Radiological Dose Assessment for 2001

#### **Livermore-Site Principal Diffuse Sources**

The dose evaluations for diffuse sources at the Livermore site in 2001 required several different modeling approaches. Building 331 Outside Yard and Building 612 Yard emissions estimates were based on facility personnel knowledge and environmental surveillance data, respectively, to estimate emissions. Building 514 Tank Farm emissions estimates were derived from radiological usage inventory data. The dose in each of these cases was calculated using CAP88-PC. Air surveillance monitoring data for plutonium from a monitor located at the SW-MEI was used to evaluate the dose from plutonium contamination in the Southeast Quadrant.

#### **Building 331 Outside Yard**

As the Tritium Facility (Building 331) conducts operations, tritium-contaminated equipment and material slated for disposal is removed from the building, packaged in a waste accumulation and storage area, removed from the building to an outside storage container, and sent to Hazardous Waste Management Division (HWM) facilities. During 2001, outgassing from such waste released an estimated 1.0 Ci  $(3.7\times10^{10}\ \text{Bq})$  of tritium to the atmosphere outside Building 331. This amount was derived from process and facility knowledge and environmental surveillance measurements. This release was modeled in CAP88-PC as a 1 m² area source, leading to a calculated 2001 dose to the SW-MEI of  $5.1\times10^{-4}\ \text{mrem}$  (5.1  $\times$  10<sup>-3</sup>  $\mu\text{Sv}$ ); a dose of  $3.8\times10^{-4}\ \text{mrem}$  (3.8  $\times$  10<sup>-3</sup>  $\mu\text{Sv}$ ) was calculated when the NEWTRIT model was implemented in CAP88-PC.

### **Building 514 Tank Farm**

Another potential source of diffuse emissions of a variety of radionuclides was HWM waste storage and treatment operations. Building 514 houses the HWM "Tank Farm," consisting of six 7,170-liter tanks with ancillary equipment such as pumps, mixers, probes, and a bulking station. The tanks are used to store and treat liquid and solid radioactive and/or mixed wastes. Treatment is performed on a batch basis. Chemicals and waste are added to the tanks to achieve the desired treatment objectives. A 2001 radionuclide usage inventory was conducted for the facility to determine the diffuse source term (Attachment 1). CAP88-PC modeling gave a 2001 SW-MEI dose for the Tank Farm to be  $1.3 \times 10^{-3}$  mrem  $(1.3 \times 10^{-2} \, \mu \text{SV})$ .

### **Building 612 Yard**

The Building 612 Yard is a potential source of diffuse emissions of tritium. This area is dedicated to hazardous waste, radioactive waste, and mixed waste management activities. The yard consists of several areas where waste containers are stacked outdoors. Several of these containers are not airtight and outgas tritium. A

surveillance air monitor designated B624 has been placed in the Building 612 Yard to provide continuous measurements of tritium in air near this source. The median annual concentration of tritium in air for 2001 in this area was 49 pCi/m³ (1.8 Bq/m³). These data were used to calculate the total tritium emissions from the area, using a conservative approach that assumed the source to be 60 m south-southwest of the air sampler. With this assumption, a diffuse source emission of 2.0 Ci/y  $(7.4\times10^{10}\ \text{Bq/y})$  was required to produce the concentrations measured at the air sampler. This source term produced a calculated 2001 dose to the SW-MEI from the Building 612 Yard of  $8.2\times10^{-3}\ \text{mrem}$  (8.2  $\times10^{-2}\ \mu\text{Sv}$ ) as calculated with CAP88-PC ; a dose of  $6.2\times10^{-3}\ \text{mrem}$  (6.2  $\times10^{-2}\ \mu\text{Sv}$ ) was calculated when the NEWTRIT model was implemented.

#### Southeast Quadrant

The Southeast Quadrant of the Livermore site has elevated levels of plutonium in the surface soil (from historic waste management operations) and air (from resuspension). A high volume air particulate sampler is located adjacent to the UNCLE Credit Union (the location of the SW-MEI) to monitor the plutonium levels in this area. Monitoring data from this air sampler were used as a direct measurement of potential dose via the air pathway. The median annual concentration of  $^{239+240}$ Pu (the analytical technique used, alpha spectroscopy, does not distinguish between  $^{239}$ Pu and  $^{240}$ Pu) in air was  $^{3.41} \times 10^{-19} \, \mu \text{Ci/mL}$  (1.26 x  $^{10^{-14}} \, \text{Bq/mL}$ ). Using the dose conversion factor of  $^{3.08} \times 10^{-18} \, \text{mrem/}\mu \text{Ci}$  (8.32 x  $^{10^{-5}} \, \text{Sv/Bq}$ ) from Federal Guidance Report No. 11, EPA-520/1-88-020, U.S. Environmental Protection Agency (1988) for  $^{239}$ Pu and  $^{240}$ Pu, and the standard man breathing rates of 8400 m³/y, the dose was  $^{8.8} \times 10^{-4} \, \text{mrem}$  (8.8 x  $^{10^{-3}} \, \mu \text{Sv}$ ) for 2001.

### **Site 300 Principal Diffuse Sources**

Diffuse sources at Site 300 involve primarily depleted uranium, and to a considerably lesser extent, tritium. During remediation efforts at Site 300, LLNL completed a contaminant screening to identify potential routes of migration from soil to air and other environmental media of these radionuclides and other contaminants (Final Site Wide Remedial Investigation Report; Webster-Scholten, Ed., 1994, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-AR-108131). Uranium-238 and tritium were identified as contaminants of potential concern.

### Tritium Evaporation and Migration at Site 300

Tritium gas and solids containing tritium (Li<sup>3</sup>H) were components of explosives assemblies tested on the firing tables during past experiments. Most of the gaseous tritium escaped to the atmosphere during the tests, but some of the solid Li<sup>3</sup>H remained as residue in the firing table gravel. Rainwater and dust-control rinse water percolated through the gravel, causing the tritium to migrate into the subsurface soil and, in some cases, eventually to the ground water. Tritium contaminated gravel was removed from the firing tables in 1988 and disposed in the

Pit 7 landfill. Tritium in landfills, firing table soils, and ground water are potential sources of diffuse emissions of tritium to the atmosphere at Site 300. LLNL personnel maintain an air tritium sampler at a perimeter location at Site 300, and doses from diffuse tritium sources may be estimated based on the monitoring data for that sampling location. For the calendar year 2001, all measurements in ambient air at the Site 300 perimeter location were below the detection limits of the analytical method, and were consistent with natural background measurements.

#### Resuspension of Depleted Uranium in Soil at Site 300

Like tritium, depleted uranium has been used as a component of explosives test assemblies. It remains as a residue in surface soils, especially near the firing tables. Because surface soil is subject to resuspension by the action of wind, rain, and other environmental disturbances, the collective effects of surface soil uranium residuals on off-site doses were evaluated.

For the 1995 NESHAPs annual report, we developed calculations to separate the contribution to measured uranium activities from naturally occurring uranium (NU) (Gallegos et al., 1996, Lawrence Livermore National Laboratory, UCRL-ID-113867-96). We base our dose estimate for resuspended depleted uranium (DU) on the measured environmental surveillance monitoring total concentration in air of uranium-238, subtracting out the part contributed by NU, from the following equation:

$$\mu = \frac{0.00726 - 0.99274 \frac{M(CU - 235)}{M(CU - 238)}}{0.00526 \frac{M(CU - 235)}{M(CU - 238)} + 0.00526}$$

where  $\mu$  is the fraction (by weight) of uranium contributed by operations, CU is composite uranium (both DU and NU), M(CU-235) the mass of U-235 in the composite (measured) uranium, and M(CU-238) the mass of U-238 in the composite (measured) uranium. (For derivation of the equation see the 1995 NESHAPs annual report, referenced above.)

As explained in last year's Site Annual Environmental Report (*Environmental Report* 2000, Biermann et al. Sept. 2001; Chapter 5, "Results" section, p. 5-7), the glass fiber filter media used in our monitors contain concentrations of  $^{235}$ U that are too high for our approach to reliably determine the quantity of operations-contributed DU. (To correct this deficiency, in January 2002 the sampling media for airborne particulates was changed from glass fibers to cellulose filters.) In absence of a better present approach, we used an eight-year average value of the estimated SW-MEI dose based on this method. This average gave 0.0037 mrem (0.037  $\mu$ Sv) as the dose

attributed to resuspension of DU in soil for 2001. Coincidentally, this is the same as the previous year's (2000) value.

# **Modeling Dose from Tritium**

To evaluate dose from tritium releases to air, we use the EPA-sanctioned CAP88-PC code. Its tritium model calculates dose from inhalation, skin absorption, and ingestion of tritium only in its tritiated water vapor form (HTO). CAP88-PC's tritiium model is based on the specific activity model, which assumes that the tritium-to-hydrogen ratio in body water is the same as in air moisture. Because the specific activity model is linked in CAP88-PC with relatively high dose coefficients for HTO, the model's dose predictions generally err on the high side.

Doses from unit concentration of HT in air are a factor of 15,000 times lower than those from unit concentration of HTO in air (International Commission on Radiological Protection (ICRP), 1995, *Age dependent doses to members of the public from intake of radionuclides, Part 4, Inhalation Dose Coefficients*. Oxford: Pergamon Press; ICRP Publication 71; Ann. ICRP 25[3&4]). Thus, doses from inhaled HT can safely be ignored unless the air concentration is extremely high. A release of HT cannot be ignored, however, because HT that reaches the ground is rapidly and efficiently converted to HTO by microorganisms in soil (McFarlane, Rogers, and Bradley, Environmental Science and Technology 12: 590-593,1978; Brown, Ogram, and Spencer, Health Physics 58:171-181, 1990) and to a lesser extent in vegetation (Sweet and Murphy, Environmental Science and Technology, 18:358-361, 1984).

Organically bound tritium (OBT) is formed by plants during photosynthesis and is incorporated by animals when ingested. Animals also metabolize some OBT from ingested or inhaled HTO. The ICRP dose coefficient for OBT is about 2.3 times higher than that of HTO, because the biological half-life of OBT in the body is longer than that of HTO, which is eliminated at the same rate as body water. Although doses predicted by CAP88-PC are generally high enough to account for dose from ingested OBT, nevertheless, a model that explicitly calculates dose from OBT is preferable.

A simple tritium model, NEWTRIT, has been developed that calculates ingestion dose from both HTO and OBT and accounts for conversion of HT to HTO in the environment after releases of HT (Peterson, S-R. and P.A. Davis, Health Physics 82(2):213-225, 2002). For this report, LLNL has used the NEWTRIT model in CAP88-PC, in addition to the default CAP88-PC code, to estimate doses from significant sources of tritium emissions; see, e.g., Table 3. A brief discussion of the NEWTRIT model was presented in Attachment 2 of last year's NESHAPs annual report (*LLNL NESHAPs 2000 Annual Report*, Gallegos et al. June 2001).

The NEWTRIT model was presented to EPA and DOE at a meeting of the Health Physics Society (Cleveland, OH, June 2001), and the paper was published in that society's journal (Peterson and Davis, 2002, Op. cit.). In October 2001, LLNL sent a letter to EPA Region IX requesting consideration of an alternative methodology for calculating doses from atmospheric releases of tritiated water vapor (HTO) and tritiated gas (HT) for use in demonstrating compliance with radionuclide NESHAPs (40 CFR 61 Subpart H). Copies of NEWTRIT, CAP88-PC-T (CAP88-PC with NEWTRIT encoded as the tritium model), and associated documentation were given to EPA and several DOE laboratories that had expressed interest. A decision has not been made as of this writing, but LLNL is hopeful that NEWTRIT, or a similar approach to modeling releases of HT and HTO for regulatory compliance, will be accepted.

# Comparison of 2001 Modeling Results with Tritium Air Surveillance Monitoring Data

A comparison was made between CAP88-PC-predicted concentrations of tritium in air and ambient air monitoring data for the eleven tritiated water vapor samplers on the Livermore site (designated VIS, SALV, POOL, CAFE, MESQ, MET, COW, B331, B514, B624, and B292) and one off-site sampler (ZON7) that have been used for comparison since 1997. Monitor locations are shown in Figure 7.

Only the three most significant sources of tritium releases to air at the Livermore site were included in the model-data comparison. The largest point source is the Tritium Facility (Building 331), where the tritium is emitted from two 30-m-high, continuously monitored stacks. The Building 331 stack emissions were determined independently by stack monitoring, with the result that a total of 18.3 Ci  $(6.8 \times 10^{11} \text{ Bq})$  of HTO was emitted in 2001. (The 1.7 Ci  $[6.3 \times 10^{10} \text{ Bq}]$  of HT emitted from the Tritium Facility stacks is not included in the comparison because the air tritium samplers only collect HTO.) These stacks make the largest contribution to the concentrations of tritium in most of the monitors, because the emissions are cast high into the air. Diffuse-source emissions are lower to the ground, primarily affecting those monitors in closest proximity. The other two principal sources in our modeling/measurement comparison are of this type: open-air diffuse emission areas associated with the Building 612 Yard and the Tritium Facility (Building 331) outside yard waste accumulation and storage areas. Emissions from the Building 612 Yard source were estimated to be 2.0 Ci  $(7.4 \times 10^{10} \text{ Bq})$ , based on calibrating CAP88PC-predictions of tritium concentrations at the tritium monitor B624 closest to it. (Thus the B624 data do not provide a test of the modeling.) Emissions from the B331 outside yard source were estimated to be 1.0 Ci  $(3.7 \times 10^{10} \,\mathrm{Bq})$  in 2001, based on facility knowledge and environmental monitoring data (primarily the B331 monitor near this yard). While these two diffuse sources contribute significantly to tritium concentrations in all of the monitors, all other potential sources of tritiated water vapor release, such as the

hazardous waste management operations in Building 514 and the Building 292 diffuse source, were too minor to influence the model-data comparison.

Annual average concentrations of HTO in air  $(pCi/m^3)$  at the locations of the twelve monitors were modeled for the three sources individually and collectively, and compared to the measured annual median concentrations . The results are displayed in Table 10.



Figure 7. Tritiated water vapor surveillance sampling locations, Livermore site.

The main conclusion shown in Table 10 is that by taking into account the leading sources releasing tritiated water vapor to air, fairly good agreement is obtained with data for all of the monitors. Generally, the modeling results agree with the on-site monitoring data within a factor of 2.5 (at ten out of twelve locations). However, in the case of two monitors (B514 and SALV), the difference is about a factor of four. The under-predictions are not as great as the over-predictions, a desired result since

it is preferable to err on the conservative side of predicting higher values. For the B292 monitor, its under-prediction is likely attributable to our neglect in the modeling of the quite small diffuse source near the building, which would noticeably contribute only to that monitor's value. In 2001, as in the past, CAP88-PC somewhat over-predicts concentrations of tritium in air at the site perimeter and offsite at ZON7.

**Table 10.** Comparison of measured and modeled annual-average concentrations of tritiated water vapor (HTO) in air at selected Livermore site locations, 2001.

| Air monitor<br>location<br>(name) | Measured<br>average<br>concentration<br>(pCi/m <sup>3</sup> ) | Modeled* average<br>concentration<br>(pCi/m³) | Ratio of<br>modeled-to-<br>measured<br>concentrations | of tritium i | eled concentra<br>in air contributed source (p0 | ated by the     |
|-----------------------------------|---------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|--------------|-------------------------------------------------|-----------------|
|                                   |                                                               |                                               |                                                       | B331 Stacks  | B612 Yard                                       | B331<br>Outside |
| B624                              | 49.1                                                          | 48.4                                          | 0.99                                                  | 0.31         | 48                                              | 0.075           |
| B331                              | 7.67                                                          | 13.1                                          | 1.7                                                   | 0.051        | 0.84                                            | 12              |
| B514                              | 4.16                                                          | 18.2                                          | 4.4                                                   | 0.15         | 18                                              | 0.076           |
| VIS                               | 1.57                                                          | 1.76                                          | 1.1                                                   | 0.69         | 0.94                                            | 0.13            |
| POOL                              | 2.40                                                          | 1.90                                          | 0.79                                                  | 0.45         | 0.75                                            | 0.70            |
| CAFE                              | 1.12                                                          | 1.69                                          | 1.5                                                   | 0.39         | 0.91                                            | 0.39            |
| COW                               | 0.818                                                         | 0.338                                         | 0.41                                                  | 0.085        | 0.15                                            | 0.10            |
| B292                              | 1.37                                                          | 0.545                                         | 0.40                                                  | 0.087        | 0.24                                            | 0.22            |
| SALV                              | 0.651                                                         | 2.55                                          | 3.9                                                   | 0.11         | 2.4                                             | 0.037           |
| MESQ                              | 0.621                                                         | 0.642                                         | 1.0                                                   | 0.11         | 0.22                                            | 0.31            |
| MET                               | 0.284                                                         | 0.334                                         | 1.2                                                   | 0.063        | 0.14                                            | 0.13            |
| ZON7                              | 0.378                                                         | 0.505                                         | 1.3                                                   | 0.38         | 0.086                                           | 0.039           |
| (CRED)**                          | _                                                             | 2.39                                          | _                                                     | 0.74         | 1.5                                             | 0.15            |

<sup>\*</sup> This result takes into account the three most significant tritium sources; it is the sum of the three contributions shown in the far-right column.

# Effect on Modeling/Monitoring Comparison of Corrections to Results of Tritium Air Surveillance Monitoring

As noted earlier in Section II, it has been found that LLNL's results for measured concentrations of tritium in ambient air require correction, due to new understanding of the effects of moisture retention by the silica gel prior to sampling. Comparisons between air concentrations predicted by CAP88-PC and observed air tritium concentrations have been included in LLNL's NESHAPs reports since 1997. The comparison shown in Table 10 uses the corrected measured values, but we should revise all comparisons for earlier years, replacing the original measured values by their corrected counterparts. Unfortunately, this is not possible, since there is no way to accurately correct LLNL's measured values obtained prior to January 2001. Two of

<sup>\*\*</sup> The CRED location does not have a tritium surveillance air monitor, but is included since it marks the location of the SW-MEI.

several reasons for this inability to correct old data are that (1) the correction factor is different for each batch of silica gel, which was changed from time to time in the past (most recently in May 2000), and (2) the initial dry-weights of the silica gel must be known for the correction factor determination, but these were not recorded and cannot be reconstructed. In lieu of a better alternative, a conservatively high correction factor of 2.1 was chosen to apply to air concentrations measured prior to 2001, to allow for the possibility that the silica gel used in previous years had more bound water than that used presently. (Approximately 99% of the results for 2001 had a correction factor less than or equal to 2.1.)

Using the 2.1 factor, revised predicted-to-observed (P/O) ratios of tritium concentrations in air at Livermore site perimeter locations and ZON7 are compared in Table 11 with the previously published ratios, for comparisons made each of the last four years. Without correction, only two of the thirty-two P/O ratios were less than 1.0, with the lowest being 0.84 at COW in 1997. When the observations are increased by a factor of 2.1, seven P/O ratios are below 1.0, with the lowest being 0.4 at COW in 1997.

**Table 11.** Previously published (upper) and revised (lower) ratios of predicted-to-observed air concentrations of tritiated water at Livermore site perimeter locations and ZON7, 1997-2000.

| Monitor | 1997 | 1998 | 1999 | 2000 |
|---------|------|------|------|------|
| CAFE    | 1.9  | 3.4  | 6.3  | 6.1  |
|         | 0.89 | 1.6  | 3.0  | 2.9  |
| COW     | 0.84 | 1.0  | 1.6  | 1.0  |
|         | 0.40 | 0.49 | 0.77 | 0.50 |
| MESQ    | 3.3  | 5.6  | 4.0  | 5.0  |
|         | 1.6  | 2.6  | 1.9  | 2.4  |
| MET     | 3.2  | 2.4  | 3.1  | 2.4  |
|         | 1.5  | 1.2  | 1.5  | 1.1  |
| POOL    | 0.99 | 2.2  | 3.9  | 4.4  |
|         | 0.47 | 1.1  | 1.9  | 2.1  |
| SALV    | 1.5  | 6.9  | 3.7  | 11.  |
|         | 0.73 | 3.3  | 1.8  | 5.2  |
| VIS     | 3.0  | 2.4  | 5.7  | 3.0  |
|         | 1.4  | 1.2  | 2.7  | 1.4  |
| ZON7    | 3.9  | 3.2  | 5.5  | 3.0  |
|         | 1.9  | 1.5  | 2.6  | 1.4  |

It should be noted that the expected uncertainty in concentrations calculated with a Gaussian plume model (such as used by CAP88-PC) produce a range of values that bracket the dispersion in P/O ratios in Table 11. Limitations of the Gaussian plume model are discussed in general terms in Section 3.2.10 of the AIRDOS-EPA manual (Moore, R.E., et al., "AIRDOS-EPA: A computerized methodology for estimating environmental concentrations and doses to man from airborne releases of radionuclides," Oak Ridge National Laboratory; USDOE Report, ORNL-5532, NTIS; 1979). More specifically, a comparison of AIRDOS-EPA predictions of air concentrations for various radionuclides (<sup>234</sup>U, <sup>238</sup>U, <sup>85</sup>Kr, and <sup>3</sup>H) with measurements at six different sites concluded that the 90% confidence interval for the accuracy of the CAP88-PC dispersion model ranges from a factor of 0.3 to 4.4, based on 51 samples ("Comparison of AIRDOS-EPA predictions of ground-level airborne radionuclide concentrations to measured values," Jack Faucett Associates, Bethesda, MD. 20814; JACKFAU-341/12-87; 1987).

# **SECTION IX. Supplemental Information on Compliance**

Status of Compliance with Other Regulations
Status of compliance with 40 CFR 61 Subpart Q - National Emission
Standards for Radon Emissions from Department of Energy Facilities
LLNL does not have storage and disposal facilities for radium containing materials that would be a significant source of radon.

# Status of compliance with 40 CFR 61 Subpart T - National Emission Standards for Radon Emissions from the Disposal of Uranium Mill Tailings

LLNL does not have or store any uranium mill tailings.

#### Information on Radon-220 and Radon-222 Emissions

Radon emissions occur naturally by emanation from the earth. Radon-222 emissions that were reported in past NESHAPs annual reports from research experiments at the Livermore site did not occur in 2001.

# ATTACHMENT 1. LLNL NESHAPs 2001 Annual Report Spreadsheet

# **Guidance for Interpreting the Data Spreadsheet**

A generalized description of each facility and its operations is provided on the spreadsheet. In addition, the following information is shown for each listed emission point or stack:

- Building and room number(s)
- Specific stack identification code(s)
- Generalized description of operations in the room(s) or area(s)
- Radionuclides utilized in the operation
- Annual radionuclide usage inventory with potential for release (by isotope, in curies)
- Physical state factors (by isotope)
- Stack parameters
- Emission control devices and emission control device abatement factors
- Estimated or measured annual emissions (by isotope)
- Distance and direction to the site-wide maximally exposed individual (SW-MEI)
- Calculated EDE to the SW-MEI
- Distance and direction to the maximally exposed individual for that specific source (MEI)
- Calculated EDE to the MEI (source term not adjusted for emission controls)
- Source category

#### Radionuclides

The radionuclides shown in the spreadsheet are those from specific emission points where air emissions were possible. If radionuclides were present, but encapsulated or sealed for the entire year, radionuclides, annual usage inventories, and emissions are not listed.

# Radionuclide Usage Inventories with Potential for Release

The annual radionuclide usage inventories for point source locations are based on data from facility experimenters and managers. For Buildings 251 (hardened area) and 332, classification issues regarding transuranic radionuclide usage inventories make use of the usage inventory/modeling approach impractical. However, all such affected emission points in these buildings are continuously monitored, and emissions are therefore directly determined.

#### Physical State Factors

The physical state factors listed are EPA potential release fractions from 40 CFR 61, Appendix D, whereby emissions are estimated from radionuclide usage inventories depending on their physical states for use in dispersion/dose assessment modeling. A physical state factor of  $1.0 \times 10^{-6}$  is used for solids,  $1.0 \times 10^{-3}$  is used for liquids and powders, and 1.0 is used for unconfined gases. The U.S. EPA has granted LLNL approved alternative emissions factors for elemental uranium, uranium/niobium alloy, and elemental plutonium. (See Table 2, page 14.) These factors are allowed provided that the material is not intentionally dispersed to the environment and that the processes do not alter the chemical form of the material.

#### Stack Parameters

Engineering surveys conducted from 1990 through 1992 form the basis for the stack physical parameters shown, which were checked and validated by facility experimenters and managers for 1994 and 1995. Stack physical parameters for sources evaluated in 2001 were updated, as necessary, by experimenters and managers for those facilities.

#### **Emission Control Devices**

High Efficiency Particulate Air (HEPA) filters are used in many LLNL facilities to control particulate emissions. For some discharge points, scrubbers and electrostatic precipitators aid the control of emissions. The operational performance of all HEPA filtration systems is routinely tested. The required efficiency of a single stage HEPA filter is 99.97%. Double staged filter systems are in place on some discharge points. Triple stage HEPA filters are used on glove box ventilation systems in the Building 332 Plutonium Facility and in the hardened portion of Building 251.

#### **Control Device Abatement Factors**

Similar to physical state factors, control device abatement factors, from Table 1 in 40 CFR 61, Appendix D, are those associated with the listed emission control devices, and are used to better estimate actual emissions for use in dispersion and dose models. By regulation, each HEPA filter stage is given a 0.01 factor (even though the required test efficiency that all LLNL HEPA filters must maintain would yield a factor of 0.0003).

#### Estimated Annual Emissions

For unmonitored and non-continuously monitored sources, estimated annual emissions for each radionuclide are based on the product of (1) usage inventory data, (2) time factors (discussed in "Emission Source Terms" in Section III, (3) EPA potential release fractions (physical state factors), and (4) applicable emission control device abatement factors.

Actual emission measurements are the basis for reported emissions from continuously monitored facilities. LLNL facilities that had continuous monitoring systems in 2001 were Buildings 175, 177, 235, 251, 331, 332, and 491, as noted earlier. See the discussion below under "0.1 mrem/y Monitoring Requirement" regarding the use of emissions measurements for monitored sources.

#### 10 mrem/y Site-Wide Dose Requirement

For LLNL to comply with the NESHAPs regulations, the LLNL site-wide maximally exposed individual (SW-MEI; defined as the hypothetical member of the public at a single residence, school, business, or office who receives the greatest LLNL-induced EDE from the combination of all radionuclide source emissions) cannot receive an EDE greater than 10 mrem/y (100  $\mu$ Sv/y). (See Section II for a discussion of the SW-MEI.)

In Attachment 1, the distance and direction to the respective SW-MEI are shown for each facility at each site. Doses to the site specific SW-MEIs were evaluated for each source and then totaled for site specific evaluations against the 10 mrem/y dose standard (see "Total Dose Estimate" in Section IV).

#### 0.1 mrem/y Monitoring Requirement

To assess compliance with the requirement for continuous monitoring (potential dose greater than 0.1 mrem/y [1.0  $\mu Sv/y$ ] to the maximally-exposed public individual or MEI, discussed earlier in Section II), emissions must be individually evaluated from each point source. The location of the MEI is generally different for each emission point. The maximum dose at a location of unrestricted public access typically occurs at a point on the site perimeter. Therefore, it is often referred to as the maximum "fence line" dose, although the off-site maximum dose could occur some distance beyond the perimeter. (This could happen, e.g., when the perimeter is close to a stack; however, for nearly all emission points at the Livermore site and Site 300, calculations show that ground level concentrations of radionuclides generally decline continuously beyond LLNL boundaries.) As stipulated by the regulations, modeling for assessment of continuous monitoring requirements assumed unabated emissions (i.e., no credit was taken for emission abatement devices, such as filters), but physical state factors and time factors were applied.

The unabated EDE cannot be calculated for HEPA-filtered facilities monitored for radioactive particles. Because the monitoring equipment is placed after HEPA filtration, there is no way to obtain an estimate for what the emissions might have been had there been no filtration. It is not reasonable to apply factors for the effects of the HEPA filters on the emission rate because most of what is measured on the HEPA filters is the result of the radioactive decay of radon, which is capable of penetrating the filter. Attachment 1 gives, for each inventoried point source, the

dose to the MEI and the distance and direction to the LLNL fence line where the MEI is located. However, for HEPA-filtered monitored sources, no value is shown.

#### Source Categories

LLNL radionuclide air emission sources have been classified into seven source categories, indicated by the number in the next to last column of the spreadsheet: (1) Unmonitored or non-continuously monitored Livermore-site facilities that have had a radionuclide usage inventory update for 2001; (2) Unmonitored or non-continuously monitored Livermore site facilities with a previous radionuclide usage inventory update (this category is not used in years with complete usage inventory updates, such as 2000); (3) Continuously monitored Livermore site facilities; (4) Site 300 explosives experiments; (5) Diffuse sources where emissions and subsequent doses were estimated using inventory processes; (6) Diffuse sources where emission and dose estimates were supported by environmental surveillance measurements; and (7) Sources whose emissions estimates and subsequent doses were estimated by confirmatory air sampling rather than continuous sampling.

| Building    | Room/Area            | Stack ID                             | Operation                                  | Radionuclides        | Annual Inventory      | Physical           | Stack              | Stack             | Stack        | Control     | Control Device | Estimated          | 10 mrem/y S | Site-Wide Do | se Requirement | 0.1 mrem/  | y Monitoring | Requirement | Source   |
|-------------|----------------------|--------------------------------------|--------------------------------------------|----------------------|-----------------------|--------------------|--------------------|-------------------|--------------|-------------|----------------|--------------------|-------------|--------------|----------------|------------|--------------|-------------|----------|
|             |                      |                                      | ·                                          |                      | with Potential for    | State              | Height (m)         | Diameter          | Velocity     | Device(s)   | Abatement      | Annual Emissions   | Distance to |              | EDE            | Distance   | Direction    | Unabated    | Category |
| NOTE: CA    | \D88-DC requires a   | activity rates of curies/year and    | gives doses in mrem/year. To conv          | ert curies to becau  | Release (Ci)          | Factor             | convert millirem   | (m)               | (m/s)        | mrem        | Factor         | (Ci)               | SWMEI (m)   | to SWMEI     | (mrem)         | to MEI (m) | to MEI       | EDE (mrem)  |          |
| NOTE. CA    | AF60-FC requires a   | ctivity rates of curies/year and     | gives doses in illient/year. To conv       | eri curies to becqu  | ereis use i Ci=3.7E+  | IV BY AND TO       | Convert millinen   | l to sieverts use | 1 3V=1.0E+03 | illelli.    |                |                    |             |              |                |            |              |             |          |
|             |                      |                                      |                                            |                      |                       |                    |                    |                   |              |             |                |                    |             |              |                |            |              |             |          |
| LIVERMOR    | E SITE POINT SOUR    | CES                                  |                                            |                      |                       |                    |                    |                   |              |             |                |                    |             |              |                |            |              |             |          |
|             |                      |                                      |                                            |                      |                       |                    |                    |                   |              |             |                |                    |             |              |                |            |              |             |          |
| Building 13 | 31 complex is a larg | e office/laboratory facility housing | both Mechanical and Electrical Engi        | neering Divisions.   |                       |                    |                    |                   |              |             |                |                    |             |              |                |            |              |             |          |
| 131         | 1221                 | FFE-02                               | Storage and cleaning of                    | U-238                | 6.1E-06               | 1.0E-06            | 12.2               | 0.15              | 7.8          | HEPA        | 0.01           | 6.1E-14            | 1326        | E            | 3.1E-12        | 567        | WNW          | 1.4E-09     | 2        |
| 131         | 1221                 | 11 L-02                              | assemblies                                 | U-235                | 7.9E-08               | 1.0E-06            | 12.2               | 0.13              | 7.0          | TILLA       | 0.01           | 7.9E-16            | 1320        |              | J.1L-12        | 307        | VVINVV       | 1.4L-09     |          |
|             |                      |                                      |                                            | U-234                | 5.7E-07               | 1.0E-06            |                    |                   |              |             |                | 5.7E-15            |             |              |                |            |              |             |          |
| 101         | 1010                 | D 4:                                 | 0, 1, 1, 1, 1                              | 11.000               | 1.55.00               | 1.05.00            |                    | N/A               |              | N           |                | 1.55.10            | 1000        |              | 0.05.11        | 504        | 144          | 4.45.00     |          |
| 131         | 1248                 | Room Air                             | Storage and display of post-test materials | U-238<br>U-235       | 1.5E-06<br>2.0E-08    | 1.0E-06<br>1.0E-06 | NA                 | NA                | NA           | None        | 1              | 1.5E-12<br>2.0E-14 | 1326        | E            | 8.6E-11        | 524        | W            | 1.4E-09     | 2        |
|             |                      |                                      | p                                          | U-234                | 1.4E-07               | 1.0E-06            |                    |                   |              |             |                | 1.4E-13            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            |                      |                       |                    |                    |                   |              |             |                |                    |             |              |                |            |              |             |          |
| 131         | 1248A                | Room Air                             | Storage and display of post-test materials | U-238<br>U-235       | 7.7E-07<br>9.9E-09    | 1.0E-06<br>1.0E-06 | NA                 | NA                | NA           | None        | 1              | 7.7E-13<br>9.9E-15 | 1326        | E            | 4.3E-11        | 524        | W            | 6.9E-10     | 2        |
|             |                      |                                      | post test materials                        | U-234                | 7.2E-08               | 1.0E-06            |                    |                   |              |             |                | 7.2E-14            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            |                      |                       |                    |                    |                   |              |             |                |                    |             |              |                |            |              |             |          |
| Building 12 | 32 provides office a | nd laboratory space for a range      | of activities, including the Directorate ( | Offices for Chemistr | and Materials Science | , es.              |                    |                   |              |             |                |                    |             | 1            |                |            |              |             |          |
|             |                      |                                      | Chemistry and Chemical Engineering I       |                      |                       |                    | offices and labora | tories.           |              |             |                |                    |             |              |                |            |              |             |          |
|             |                      |                                      |                                            |                      |                       |                    |                    |                   |              |             |                |                    |             |              |                |            |              |             |          |
| 132N        | 2671                 | FHE-6000/7000                        | Mass spectrometry analysis                 | Pu-238<br>Pu-239     | 6.1E-07<br>4.5E-08    | 1.0E-06<br>1.0E-06 | 38.1               | 2.13              | 11.3         | Double HEPA | 0.0001         | 6.1E-17<br>4.5E-18 | 1504        | E            | 2.8E-15        | 1918       | NE           | 3.8E-11     | 1        |
|             |                      |                                      |                                            | Pu-240               | 1.1E-08               | 1.0E-06            |                    |                   |              |             |                | 1.1E-18            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | Pu-241               | 1.1E-07               | 1.0E-06            |                    |                   |              |             |                | 1.1E-17            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | Pu-242<br>Am-241     | 1.4E-12<br>1.1E-09    | 1.0E-06<br>1.0E-06 |                    |                   |              |             |                | 1.4E-22<br>1.1E-19 |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | U-234                | 6.1E-12               | 1.0E-06            |                    |                   |              |             |                | 6.1E-22            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            |                      |                       |                    |                    |                   |              |             |                |                    |             |              |                |            |              |             |          |
| 132N        | 2675                 | FHE-6000/7000                        | Preparation of aqueous                     | U-234<br>U-235       | 2.6E-18<br>3.3E-16    | 1.0E-03<br>1.0E-03 | 38.1               | 2.13              | 8.6          | None        | 1              | 2.6E-21<br>3.3E-19 | 1504        | E            | 6.7E-16        | 481        | SW           | 1.0E-15     | 2        |
|             |                      |                                      | solutions for analysis                     | U-238                | 4.6E-14               | 1.0E-03            |                    |                   |              |             |                | 4.6E-17            |             |              |                |            |              |             |          |
|             |                      | FHE-6000/7000                        | Analysis of aqueous solutions              | U-234                | 1.3E-14               | 1.0E+00            | 38.1               | 2.13              | 8.6          | HEPA        | 0.01           | 1.3E-16            | 1504        | Е            | 3.3E-11        | 481        | SW           | 5.2E-09     | 2        |
|             |                      |                                      |                                            | U-235                | 1.7E-12               | 1.0E+00            |                    |                   |              |             |                | 1.7E-14            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | U-238                | 2.3E-10               | 1.0E+00            |                    |                   |              |             |                | 2.3E-12            |             |              |                |            |              |             |          |
| 132N        | 2679                 | FHE-6000/7000                        | Preparation of aqueous                     | U-234                | 3.7E-17               | 1.0E+00            | 38.1               | 2.13              | 8.6          | HEPA        | 0.01           | 3.7E-19            | 1504        | Е            | 1.3E-12        | 481        | SW           | 2.0E-10     | 2        |
|             |                      |                                      | solutions for analysis                     | U-235                | 1.5E-14               | 1.0E+00            |                    |                   |              |             |                | 1.5E-16            |             |              |                |            |              |             |          |
|             |                      |                                      | +                                          | U-238<br>Th-232      | 7.4E-12<br>5.5E-13    | 1.0E+00<br>1.0E+00 |                    |                   |              |             |                | 7.4E-14<br>5.5E-15 |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | 111 202              | 0.02 10               | 1.02100            |                    |                   |              |             |                | 0.02 10            |             |              |                |            |              |             |          |
| 132N        | 2685                 | FHE-6000/7000                        | Transfer and solvent extraction            | Cs-137               | 8.8E-09               | 1.0E-03            | 38.1               | 2.13              | 8.6          | None        | 1              | 9.0E-12            | 1504        | E            | 3.8E-11        | 481        | SW           | 6.2E-11     | 2        |
|             |                      |                                      | of waste samples for PCB analysis          | Co-60<br>Sr-90       | 4.4E-10<br>4.8E-09    | 1.0E-03<br>1.0E-03 |                    |                   |              |             |                | 4.5E-13<br>4.9E-12 |             |              |                |            |              |             |          |
|             |                      |                                      | ioi i ob analysis                          | Th-228               | 3.4E-13               | 1.0E-03            |                    |                   |              |             |                | 3.5E-16            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | Th-230               | 1.0E-12               | 1.0E-03            |                    |                   |              |             |                | 1.0E-15            |             |              |                |            |              |             |          |
|             |                      |                                      | +                                          | Th-232<br>Pu-238     | 7.2E-14<br>1.0E-11    | 1.0E-03<br>1.0E-03 |                    |                   |              |             |                | 7.4E-17<br>1.1E-14 |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | Pu-239               | 4.4E-10               | 1.0E-03            |                    |                   |              |             |                | 4.5E-13            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | Pu-240               | 2.7E-10               | 1.0E-03            |                    |                   |              |             |                | 2.8E-13            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | Pu-241<br>Am-241     | 2.4E-10<br>2.4E-11    | 1.0E-03<br>1.0E-03 |                    |                   |              |             |                | 2.5E-13<br>2.5E-14 |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | U-234                | 6.8E-12               | 1.0E-03            |                    |                   |              |             |                | 7.0E-15            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | U-235                | 3.9E-13               | 1.0E-03            |                    |                   |              |             |                | 4.0E-16<br>1.2E-15 |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | U-238                | 1.2E-12               | 1.0E-03            |                    |                   |              |             |                | 1.2E-15            |             |              |                |            |              |             |          |
| 132N        | 2694                 | FHE-6000/7000                        | Transfer and solvent extraction            | Cs-137               | 5.7E-09               | 1.0E-03            | 38.1               | 2.13              | 8.6          | None        | 1              | 5.7E-12            | 1504        | Е            | 2.5E-11        | 481        | SW           | 3.9E-11     | 2        |
|             |                      |                                      | of waste samples                           | Co-60                | 2.7E-10               | 1.0E-03            | -                  |                   |              |             |                | 2.7E-13            |             |              |                |            |              |             |          |
|             |                      |                                      | for volatiles analysis                     | Sr-90<br>Th-228      | 3.0E-09<br>2.2E-13    | 1.0E-03<br>1.0E-03 |                    |                   |              |             |                | 3.0E-12<br>2.2E-16 |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | Th-230               | 6.5E-13               | 1.0E-03            |                    |                   |              |             |                | 6.5E-16            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | Th-232               | 4.4E-14               | 1.0E-03            |                    |                   |              |             |                | 4.4E-17            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | Pu-238<br>Pu-239     | 6.5E-12<br>2.9E-10    | 1.0E-03<br>1.0E-03 |                    |                   |              |             |                | 6.5E-15<br>2.9E-13 |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | Pu-240               | 1.8E-10               | 1.0E-03            |                    |                   |              |             |                | 1.8E-13            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | Pu-241               | 1.5E-10               | 1.0E-03            |                    |                   |              |             |                | 1.5E-13            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | Am-241<br>U-234      | 1.5E-11<br>4.3E-12    | 1.0E-03<br>1.0E-03 |                    |                   |              |             |                | 1.5E-14<br>4.3E-15 |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | U-235                | 2.5E-13               | 1.0E-03            |                    |                   |              |             |                | 2.5E-16            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            | U-238                | 7.8E-13               | 1.0E-03            |                    |                   |              |             |                | 7.8E-16            |             |              |                |            |              |             |          |
|             |                      |                                      |                                            |                      |                       |                    |                    |                   |              |             |                |                    |             |              |                |            |              |             |          |

| Buildina   | Room/Area            | Stack ID                      | Operation                                | Radionuclides      | Annual Inventory     | Physical           | Stack                                            | Stack              | Stack             | Control             | Control Device      | Estimated          | 10 mram/y 9 | Sita-Wida Dosa                                   | Requirement | 0.1 mrem/  | y Monitoring | Requirement | Source   |
|------------|----------------------|-------------------------------|------------------------------------------|--------------------|----------------------|--------------------|--------------------------------------------------|--------------------|-------------------|---------------------|---------------------|--------------------|-------------|--------------------------------------------------|-------------|------------|--------------|-------------|----------|
| Dulluling  | 1100III/Alea         | Stack ID                      | Operation                                | riadionaciides     | with Potential for   | State              | Height (m)                                       | Diameter           | Velocity          | Device(s)           | Abatement           | Annual Emissions   | Distance to |                                                  | EDE         | Distance   | Direction    | Unabated    | Category |
|            |                      |                               |                                          |                    | Release (Ci)         | Factor             | rioigiit (iii)                                   | (m)                | (m/s)             | Device(c)           | Factor              | (Ci)               | SWMEI (m)   | to SWMEI                                         | (mrem)      | to MEI (m) | to MEI       | EDE (mrem)  | Category |
| 132N       | 2870                 | FHE-6000/7000                 | Preparation of uranium sol-gels          | U-234              | 4.0E-07              | 1.0E-03            | 38.1                                             | 2.13               | 8.6               | None                | 1                   | 4.0E-10            | 1504        | E                                                | 1.0E-04     | 481        | SW           | 1.5E-04     | 2        |
| .02.1      | 20.0                 |                               | 1 reparation of aramam congets           | U-235              | 5.0E-05              | 1.0E-03            | 30                                               | 20                 | 0.0               | 110.10              |                     | 5.0E-08            |             | <del>                                     </del> |             |            |              |             | + -      |
|            |                      |                               |                                          | U-238              | 6.9E-03              | 1.0E-03            |                                                  |                    |                   |                     |                     | 6.9E-06            |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          |                    |                      |                    |                                                  |                    |                   |                     |                     |                    |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          |                    |                      |                    |                                                  |                    |                   |                     |                     |                    |             |                                                  |             |            |              |             |          |
| 132S       | 2788                 | FHE-6000/7000                 | Transfer of uranium                      | U-238              | 5.7E-10              | 1.0E-03            | 4.6                                              | 1.22               | 8.9               | None                | 1                   | 5.7E-13            | 1504        | E                                                | 2.1E-11     | 453        | SW           | 7.4E-11     | 2        |
|            |                      |                               |                                          | U-235              | 7.3E-12              | 1.0E-03            |                                                  |                    |                   |                     |                     | 7.3E-15            |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          | U-234              | 5.3E-11              | 1.0E-03            |                                                  |                    |                   |                     |                     | 5.3E-14            |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          |                    |                      |                    |                                                  |                    |                   |                     |                     |                    |             |                                                  |             |            |              |             |          |
|            |                      |                               | lies nuclear and isotope sciences to a w |                    |                      |                    |                                                  |                    |                   |                     | haracterization and | analysis.          |             |                                                  |             |            |              |             |          |
| Building 1 | 51 also contains the | Chemistry and Materials Scien | ces Environmental Services laboratory    | where samples of w | aste streams and env | rironmental m      | edia (air, water, s                              | oil etc.) are anal | yzed for their ra | dionuclide content. |                     |                    |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          |                    |                      |                    |                                                  |                    |                   |                     |                     |                    |             |                                                  |             |            |              |             |          |
| 151        | 1033                 | FHE-2                         | Evaporation and transfer                 | Cm-248             | 3.5E-07              | 1.0E-03            | 12.8                                             | 0.41               | 7.8               | None                | 1                   | 3.5E-10            | 1308        | E                                                | 4.4E-07     | 768        | SW           | 1.1E-06     | 2        |
|            |                      |                               | of solutions                             | Cm-246             | 8.3E-07              | 1.0E-03            |                                                  |                    |                   |                     |                     | 8.3E-10            | -           |                                                  |             |            |              |             |          |
|            |                      |                               |                                          | U-233              | 1.9E-09              | 1.0E-03            |                                                  |                    |                   |                     |                     | 1.9E-12            |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          | Np-237             | 3.5E-08              | 1.0E-03            |                                                  |                    |                   |                     |                     | 3.5E-11            |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          | Pu-244             | 1.8E-11              | 1.0E-03            |                                                  |                    |                   |                     |                     | 1.8E-14            |             |                                                  |             |            |              |             |          |
| 454        | 10045                | 50DF 5/0                      |                                          |                    | 0.75.04              | 1.05.00            |                                                  | 0.10               | 0.7               | D 11 11ED4          | 0.0004              | 0.75.11            | 1000        | + - +                                            | 4.55.07     | 5.40       | 147          | 1.05.00     | +        |
| 151        | 1034B                | FGBE-5/6                      | Sample preparation                       | Am-241             | 2.7E-04              | 1.0E-03            | 7.0                                              | 0.13               | 3.7               | Double HEPA         | 0.0001              | 2.7E-11            | 1308        | E                                                | 1.5E-07     | 540        | W            | 1.3E-02     | 1        |
|            |                      |                               |                                          | Pu-238             | 3.0E-03              | 1.0E-03            | -                                                |                    |                   |                     |                     | 3.0E-10            | -           | + +                                              |             | 584        | NWN          | 1.3E-02     | +        |
|            |                      |                               |                                          | Pu-239             | 4.7E-03              | 1.0E-03            | -                                                |                    |                   |                     |                     | 4.7E-10            |             | +                                                |             |            |              |             | +        |
|            |                      |                               |                                          | Pu-240             | 1.0E-03              | 1.0E-03            |                                                  |                    |                   |                     |                     | 1.0E-10            | -           | +                                                |             |            |              |             | +        |
|            |                      |                               |                                          | Pu-241             | 1.6E-02              | 1.0E-03            | -                                                |                    |                   |                     |                     | 1.6E-09            |             | +                                                |             |            |              |             | +        |
|            |                      |                               |                                          | Pu-242             | 4.7E-09              | 1.0E-03            | -                                                |                    |                   |                     |                     | 4.7E-16            |             | +                                                |             |            |              |             | +        |
|            |                      |                               |                                          | U-234              | 3.3E-08              | 1.0E-03<br>1.0E-03 | -                                                |                    |                   |                     |                     | 3.3E-15<br>1.4E-11 |             |                                                  |             |            |              |             | +        |
|            |                      |                               |                                          | Am-243             | 1.4E-04              | 1.UE-03            | -                                                |                    |                   |                     |                     | 1.41-11            |             | +                                                |             |            |              |             | +        |
| 151        | 1039                 | FHE-43                        | Transfer of solutions                    | Cs-137             | 4.6E-10              | 1.0E-03            | 12.8                                             | 0.46               | 11.3              | None                | 1                   | 4.6E-13            | 1308        | E                                                | 3.9E-11     | 768        | SW           | 7.6E-11     | 2        |
| 131        | 1039                 | FRE-43                        | Transier or solutions                    | Sr-90              | 3.0E-10              | 1.0E-03            | 12.0                                             | 0.46               | 11.3              | None                | 1                   | 3.0E-13            | 1306        | + -                                              | 3.9⊑-11     | 700        | SVV          | 7.0E-11     | +        |
|            |                      |                               |                                          | Gross alpha        | 3.2E-10              | 1.0E-03            |                                                  |                    |                   |                     |                     | 3.2E-13            |             | +                                                |             |            |              |             | +        |
|            |                      |                               |                                          | Gioss aipiia       | 3.2E-10              | 1.0E-03            |                                                  |                    |                   |                     |                     | 3.2E-13            |             | +                                                |             |            |              |             | +        |
| 151        | 1123                 | FHE-41                        | Evaporation and transfer                 | Pu-239             | 2.5E-14              | 1.0E-03            | 12.8                                             | 0.30               | 6.6               | None                | 1                   | 2.5E-17            | 1308        | E                                                | 3.5E-15     | 768        | SW           | 1.0E-14     | 2        |
| 131        | 1123                 | FNE-41                        | of solutions                             | U-238              | 2.6E-15              | 1.0E-03            | 12.0                                             | 0.30               | 0.0               | None                | 1                   | 2.6E-18            | 1306        | + - +                                            | 3.36-13     | 584        | WNW          | 1.0E-14     | +        |
|            |                      |                               | Or Solutions                             | 0-200              | 2.02-13              | 1.02-00            |                                                  |                    |                   |                     |                     | 2.01-10            |             |                                                  |             | 304        | ******       | 1.01-14     | +        |
| 151        | 1241                 | FHE-68                        | Sample preparation and                   | U-234              | 2.5E-05              | 1.0E-03            | 13.1                                             | 0.30               | 6.6               | None                | 1                   | 2.5E-08            | 1308        | E                                                | 1.4E-06     | 584        | WNW          | 9.8E-04     | 1        |
| 131        | 1241                 | TTIE-00                       | radiochemical analysis of uranium        | U-235              | 4.2E-07              | 1.0E-03            | 10.1                                             | 0.00               | 0.0               | TAOLIC              | '                   | 4.2E-10            | 1000        |                                                  | 1.46-00     | 304        | *******      | 3.0L-04     | +        |
|            |                      |                               | Tadioonomical analysis of aramam         | U-236              | 1.2E-06              | 1.0E-03            |                                                  |                    |                   |                     |                     | 1.2E-09            |             |                                                  |             |            |              |             | +        |
|            |                      |                               |                                          | U-238              | 9.3E-09              | 1.0E-03            |                                                  |                    |                   |                     |                     | 9.3E-12            |             | + +                                              |             |            |              |             | +        |
|            |                      |                               |                                          | 0 200              | 0.02 00              | 1.02 00            |                                                  |                    |                   |                     |                     | 0.02 .2            |             |                                                  |             |            |              |             |          |
| 151        | 1303                 | FHE-2000                      | Sample preparation                       | U-238              | 8.4E-13              | 1.0E+00            | 11.9                                             | 0.48               | 15.4              | None                | 1                   | 8.4E-13            | 1308        | E                                                | 4.4E-08     | 1125       | NNE          | 8.2E-08     | 2        |
|            |                      |                               | and analysis (ICP-MS)                    | U-235              | 3.9E-14              | 1.0E+00            |                                                  |                    |                   |                     |                     | 3.9E-14            |             |                                                  |             | _          |              |             | 4        |
|            |                      |                               |                                          | U-234              | 8.4E-13              | 1.0E+00            |                                                  |                    |                   |                     |                     | 8.4E-13            |             |                                                  |             |            |              |             | +        |
|            |                      |                               |                                          | U-233              | 1.9E-10              | 1.0E+00            |                                                  |                    |                   |                     |                     | 1.9E-10            |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          | Pu-239             | 3.1E-10              | 1.0E+00            |                                                  |                    |                   |                     |                     | 3.1E-10            |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          | U-238              | 8.4E-14              | 1.0E-03            |                                                  |                    |                   |                     |                     | 8.4E-17            |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          | U-235              | 3.9E-15              | 1.0E-03            |                                                  |                    |                   |                     |                     | 3.9E-18            |             |                                                  |             |            |              |             | T        |
|            |                      |                               |                                          | U-234              | 8.4E-14              | 1.0E-03            |                                                  |                    |                   |                     |                     | 8.4E-17            |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          | U-233              | 1.9E-11              | 1.0E-03            |                                                  |                    |                   |                     |                     | 1.9E-14            |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          | Pu-239             | 3.1E-11              | 1.0E-03            |                                                  |                    |                   |                     |                     | 3.1E-14            |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          |                    |                      |                    |                                                  |                    |                   |                     |                     |                    |             |                                                  |             |            |              |             |          |
| 151        | 1304                 | FHE-2000                      | Sample preparation                       | Gross alpha        | 1.2E-08              | 1.0E-03            | 11.9                                             | 0.48               | 15.4              | None                | 1                   | 1.2E-11            | 1308        | E                                                | 1.5E-09     | 1125       | NNE          | 2.6E-09     | 1        |
|            |                      |                               |                                          | Gross beta         | 2.0E-08              | 1.0E-03            |                                                  |                    |                   |                     |                     | 2.0E-11            |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          | Gross gamma        | 2.0E-08              | 1.0E-03            |                                                  |                    |                   |                     |                     | 2.0E-11            |             | 1                                                |             |            |              |             |          |
|            |                      |                               |                                          |                    |                      |                    |                                                  |                    |                   |                     |                     |                    |             |                                                  |             |            |              |             |          |
| 151        | 1318                 | FHE-26                        | Sample preparation                       | Pu-239             | 1.0E-09              | 1.0E-03            | 13.1                                             | 0.36               | 7.4               | None                | 1                   | 1.0E-12            | 1308        | E                                                | 1.8E-10     | 768        | SW           | 4.8E-10     | 2        |
|            |                      |                               |                                          | Am-241             | 2.0E-10              | 1.0E-03            | -                                                |                    |                   |                     |                     | 2.0E-13            |             |                                                  |             |            |              |             |          |
|            |                      |                               |                                          | Cm-244             | 1.0E-10              | 1.0E-03            | -                                                |                    |                   |                     |                     | 1.0E-13            |             | 1                                                |             |            |              |             | +        |
|            | 10                   |                               |                                          |                    |                      |                    |                                                  |                    |                   |                     |                     |                    |             | <del>  _  </del>                                 |             |            |              |             |          |
| 151        | 1322                 | FHE-33                        | Sample preparation                       | Gross alpha        | 6.0E-08              | 1.0E-03            | 12.8                                             | 0.36               | 8.1               | None                | 1                   | 6.0E-11            | 1308        | E                                                | 1.2E-05     | 768        | SW           | 3.1E-05     | 2        |
|            |                      |                               |                                          | Gross beta         | 1.0E-07              | 1.0E-03            | -                                                |                    |                   |                     |                     | 1.0E-10            |             | +                                                |             |            |              |             | +        |
|            |                      |                               |                                          | Gross gamma        | 1.0E-07              | 1.0E-03            | -                                                |                    |                   |                     |                     | 1.0E-10            |             | + +                                              |             |            |              |             | +        |
|            |                      |                               |                                          | U-238              | 2.4E-04              | 1.0E-03            | -                                                |                    |                   |                     |                     | 2.4E-07            |             | +                                                |             |            |              |             | +        |
|            |                      |                               |                                          | U-235              | 3.1E-06              | 1.0E-03            | -                                                |                    |                   |                     |                     | 3.1E-09            |             | +                                                |             |            |              |             | +        |
|            |                      |                               |                                          | U-234              | 2.2E-05              | 1.0E-03            | +                                                |                    |                   |                     |                     | 2.2E-08            |             | +                                                |             |            |              |             | +        |
| 151        | 1326                 | FHE-43                        | Sample properation                       | MFP                | 5.0E-05              | 1.0E-03            | 12.8                                             | 0.36               | 6.0               | None                | 1                   | 5.0E-08            | 1308        | E                                                | 7.6E-08     | 768        | SW           | 2.0E-07     | +        |
| 151        | 1320                 | rnt-43                        | Sample preparation                       | Zn-65              | 5.0E-05<br>1.0E-07   | 1.0E-03<br>1.0E-03 | 12.8                                             | 0.36               | 6.8               | ivone               | 1                   | 5.0E-08<br>1.0E-10 | 1308        | -                                                | 7.0⊏-08     | /08        | OVV          | 2.UE-U/     | 2        |
|            |                      |                               |                                          | Cs-137             | 2.0E-07              | 1.0E-03<br>1.0E-03 | <del>                                     </del> |                    |                   |                     |                     | 2.0E-11            |             | + +                                              |             |            |              |             | +        |
|            |                      |                               |                                          | Cs-137<br>Cs-134   | 2.0E-08<br>1.0E-08   | 1.0E-03<br>1.0E-03 | +                                                |                    |                   |                     |                     | 2.0E-11<br>1.0E-11 |             | + +                                              |             |            |              |             | +        |
|            |                      |                               |                                          | Cs-134<br>Co-60    | 2.7E-07              | 1.0E-03<br>1.0E-03 | 1                                                |                    |                   |                     |                     | 2.7E-10            |             | + +                                              |             |            |              |             | +        |
|            |                      |                               |                                          | Bi-207             | 2.7E-07<br>2.0E-07   | 1.0E-03<br>1.0E-03 | <del>                                     </del> |                    |                   |                     |                     | 2.7E-10<br>2.0E-10 | 1           | + +                                              |             |            |              |             | +        |
|            |                      |                               |                                          | Na-22              | 2.0E-07<br>2.7E-07   | 1.0E-03<br>1.0E-03 | +                                                |                    |                   |                     |                     | 2.0E-10<br>2.7E-10 |             | + +                                              |             |            |              |             | +        |
|            | 1 1                  |                               | +                                        | Eu-152             | 2.7E-07<br>2.7E-09   | 1.0E-03            | 1                                                |                    |                   |                     |                     | 2.7E-10<br>2.7E-12 | +           | + +                                              |             |            |              |             | +        |
|            |                      |                               |                                          | F11-152            |                      |                    |                                                  |                    |                   |                     |                     |                    |             |                                                  |             |            |              |             |          |

| Building | Room/Area     | Stack ID    | Operation                                | Radionuclides   | Annual Inventory   | Physical           | Stack      | Stack    | Stack    | Control   | Control Device | Estimated          | 10 mrem/v S | ite-Wide Do | se Requirement | 0.1 mrem/  | v Monitorina | Requirement | Source   |
|----------|---------------|-------------|------------------------------------------|-----------------|--------------------|--------------------|------------|----------|----------|-----------|----------------|--------------------|-------------|-------------|----------------|------------|--------------|-------------|----------|
| Dunumg   | 1100111/71100 | Oldon 15    | operation.                               | - HadioHadilado | with Potential for | State              | Height (m) | Diameter | Velocity | Device(s) | Abatement      | Annual Emissions   |             |             | EDE            | Distance   | Direction    | Unabated    | Category |
|          |               |             |                                          |                 | Release (Ci)       | Factor             |            | (m)      | (m/s)    |           | Factor         | (Ci)               | SWMEI (m)   |             | (mrem)         | to MEI (m) | to MEI       | EDE (mrem)  | , ,      |
| 151      | 1326          | (continued) |                                          | Pu-236          | 1.0E-06            | 1.0E-06            |            | ` ′      | ` ′      |           |                | 1.0E-12            | \           |             | , ,            | ` ` `      |              | ` ′         |          |
|          |               |             |                                          | Pu-238          | 1.0E-05            | 1.0E-06            |            |          |          |           |                | 1.0E-11            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-239          | 1.0E-05            | 1.0E-06            |            |          |          |           |                | 1.0E-11            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-240          | 1.0E-05            | 1.0E-06            |            |          |          |           |                | 1.0E-11            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-242          | 1.0E-05            | 1.0E-06            |            |          |          |           |                | 1.0E-11            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-244          | 1.0E-05            | 1.0E-06            |            |          |          |           |                | 1.0E-11            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-241          | 1.0E-04            | 1.0E-06            |            |          |          |           |                | 1.0E-10            |             |             |                |            |              |             |          |
|          |               |             |                                          | Am-241          | 5.0E-06            | 1.0E-06            |            |          |          |           |                | 5.0E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          | Am-243          | 5.0E-06            | 1.0E-06            |            |          |          |           |                | 5.0E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          | U-238<br>U-235  | 6.5E-08<br>3.0E-09 | 1.0E-06<br>1.0E-06 |            |          |          |           |                | 6.5E-14<br>3.0E-15 |             |             |                |            |              |             |          |
|          | +             |             |                                          | U-234           | 4.7E-08            | 1.0E-06            |            |          |          |           |                | 4.7E-14            |             |             |                |            |              |             |          |
|          |               |             |                                          | Np-237          | 1.0E-07            | 1.0E-06            |            |          |          |           |                | 1.0E-13            |             |             |                |            |              |             |          |
|          |               |             |                                          | Th-232          | 2.2E-09            | 1.0E-06            |            |          |          |           |                | 2.2E-15            |             |             |                |            |              |             |          |
|          |               |             |                                          | Cf-249          | 1.0E-06            | 1.0E-06            |            |          |          |           |                | 1.0E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          | Cm-242          | 1.0E-06            | 1.0E-06            |            |          |          |           |                | 1.0E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          | Cm-244          | 1.0E-06            | 1.0E-06            |            |          |          |           |                | 1.0E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          | Cm-246          | 1.0E-06            | 1.0E-06            |            |          |          |           |                | 1.0E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          | Cm-248          | 1.0E-06            | 1.0E-06            |            |          |          |           |                | 1.0E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          | -               |                    |                    |            |          |          |           |                |                    |             |             |                |            |              |             |          |
| 151      | 1330          | FHE-52      | Transfer of waste samples                | Cs-137          | 9.6E-08            | 1.0E-03            | 12.8       | 0.36     | 7.6      | None      | 1              | 9.6E-11            | 1308        | Е           | 1.2E-09        | 768        | SW           | 3.3E-09     | 2        |
|          |               |             | for analysis                             | Co-60           | 4.7E-09            | 1.0E-03            |            |          |          |           |                | 4.7E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          | Sr-90           | 5.2E-08            | 1.0E-03            |            |          |          |           |                | 5.2E-11            |             |             |                |            |              |             |          |
|          |               |             |                                          | Th-228          | 3.7E-12            | 1.0E-03            |            |          |          |           |                | 3.7E-15            |             |             |                |            |              |             |          |
|          |               |             |                                          | Th-230          | 1.1E-11            | 1.0E-03            |            |          |          |           |                | 1.1E-14            |             |             |                |            |              |             |          |
|          |               |             |                                          | Th-232          | 7.7E-13            | 1.0E-03            |            |          |          |           |                | 7.7E-16            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-238          | 1.1E-10            | 1.0E-03            |            |          |          |           |                | 1.1E-13            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-239          | 5.0E-09            | 1.0E-03            |            |          |          |           |                | 5.0E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-240          | 3.0E-09            | 1.0E-03            |            |          |          |           |                | 3.0E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-241          | 2.6E-09            | 1.0E-03            |            |          |          |           |                | 2.6E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          | Am-241          | 2.6E-10            | 1.0E-03            |            |          |          |           |                | 2.6E-13            |             |             |                |            |              |             |          |
|          |               |             |                                          | U-234           | 7.4E-11            | 1.0E-03            |            |          |          |           |                | 7.4E-14            |             |             |                |            |              |             |          |
|          |               |             |                                          | U-235           | 4.3E-12            | 1.0E-03            |            |          |          |           |                | 4.3E-15            |             |             |                |            |              |             |          |
|          |               |             |                                          | U-238           | 1.3E-11            | 1.0E-03            |            |          |          |           |                | 1.3E-14            |             |             |                |            |              |             |          |
|          |               |             |                                          | H-3             | 8.4E-12            | 1.0E-03            |            |          |          |           |                | 8.4E-15            |             |             |                |            |              |             |          |
| 151      | 2103          | FHE-6       | Sorption studies                         | Pu-239          | 1.4E-07            | 1.0E-03            | 12.8       | 0.41     | 7.5      | None      | 1              | 1.4E-10            | 1308        | Е           | 2.5E-08        | 768        | SW           | 6.5E-08     | 2        |
| 101      | 2100          | 7712.0      | Corption studies                         | Pu-240          | 3.1E-08            | 1.0E-03            | 12.0       | 0.41     | 7.0      | 140110    | •              | 3.1E-11            | 1000        | _           | 2.02 00        | 700        | "            | 0.02 00     | _        |
|          |               |             |                                          | Pu-241          | 4.8E-07            | 1.0E-03            |            |          |          |           |                | 4.8E-10            |             |             |                |            |              |             |          |
|          |               |             |                                          | Am-241          | 8.4E-09            | 1.0E-03            |            |          |          |           |                | 8.4E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-238          | 4.0E-09            | 1.0E-03            |            |          |          |           |                | 4.0E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          |                 |                    |                    |            |          |          |           |                |                    |             |             |                |            |              |             |          |
| 151      | 2107          | FHE-14      | Transfer of solutions                    | Pu-239          | 2.0E-13            | 1.0E-03            | 12.8       | 0.41     | 7.3      | None      | 1              | 2.0E-16            | 1308        | Е           | 3.8E-07        | 768        | SW           | 9.8E-07     | 2        |
|          |               |             | for analysis                             | U-238           | 4.7E-06            | 1.0E-03            |            |          |          |           |                | 4.7E-09            |             |             |                |            |              |             |          |
|          |               |             |                                          | U-235           | 2.2E-07            | 1.0E-03            |            |          |          |           |                | 2.2E-10            |             |             |                |            |              |             |          |
|          |               |             |                                          | U-234           | 3.4E-06            | 1.0E-03            |            |          |          |           |                | 3.4E-09            |             |             |                |            |              |             |          |
|          |               |             |                                          |                 |                    |                    |            |          |          |           |                |                    |             |             |                |            |              |             |          |
| 151      | 2109          | FHE-19      | Collection of daughter products          | Th-228          | 1.2E-10            | 1.0E-06            | 13.1       | 0.30     | 6.1      | None      | 1              | 1.2E-16            | 1308        | E           | 1.0E-14        | 584        | WNW          | 3.0E-14     | 2        |
|          |               |             | of Th-228                                |                 |                    |                    |            |          |          |           |                |                    |             |             |                |            |              |             |          |
| 454      | 0400          | EUE 46      | lan avalance akvalina                    | 0- 440          | 4.05.00            | 1.05.00            | 10.1       | 0.00     | 0.0      | Mana      |                | 4.05.44            | 1000        | _           | 0.05.40        | 504        | 14/N DA/     | 0.55.40     | _        |
| 151      | 2109          | FHE-15      | Ion exchange studies                     | Sn-113          | 1.8E-08            | 1.0E-03            | 13.1       | 0.30     | 6.2      | None      | 1              | 1.8E-11            | 1308        | E           | 8.8E-13        | 584        | WNW          | 2.5E-12     | 2        |
|          |               |             |                                          |                 |                    |                    |            |          |          |           | +              |                    |             |             |                |            |              |             |          |
| 151      | 2117          | FHE-23      | Preparation of waste samples             | Gross alpha     | 9.8E-09            | 1.0E-03            | 12.8       | 0.41     | 8.0      | None      | 1              | 9.8E-12            | 1308        | E           | 1.3E-09        | 768        | SW           | 3.2E-09     | 2        |
|          | -117          | 1112 20     | for analysis                             | Gross beta      | 2.2E-10            | 1.0E-03            | 12.0       | V1       | 0.0      | 110116    |                | 2.2E-13            | 1000        |             |                | , 55       |              | 5.22 55     |          |
|          |               |             | - La direction                           |                 |                    | 00                 |            |          |          |           |                |                    |             |             |                |            |              |             |          |
| 151      | 2121          | FHE-36      | Sample preparation                       | Cs-137          | 9.5E-07            | 1.0E-03            | 12.8       | 0.41     | 8.0      | None      | 1              | 9.5E-10            | 1308        | Е           | 1.5E-08        | 768        | SW           | 3.8E-08     | 2        |
|          |               |             | , p. | Co-60           | 4.7E-08            | 1.0E-03            |            |          |          |           |                | 4.7E-11            | 1           | 1 -         |                |            |              |             | T -      |
|          |               |             |                                          | Sr-90           | 5.1E-07            | 1.0E-03            |            |          |          |           |                | 5.1E-10            |             |             |                |            |              |             |          |
|          |               |             |                                          | Th-228          | 3.7E-11            | 1.0E-03            |            |          |          |           |                | 3.7E-14            |             |             |                |            |              |             |          |
|          |               |             |                                          | Th-230          | 1.1E-10            | 1.0E-03            |            |          |          |           |                | 1.1E-13            |             |             |                |            |              |             |          |
|          |               |             |                                          | Th-232          | 7.6E-12            | 1.0E-03            |            |          |          |           |                | 7.6E-15            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-238          | 1.1E-09            | 1.0E-03            |            |          |          |           |                | 1.1E-12            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-239          | 4.9E-08            | 1.0E-03            |            |          |          |           |                | 4.9E-11            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-240          | 2.9E-08            | 1.0E-03            |            |          |          |           |                | 2.9E-11            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-241          | 2.6E-08            | 1.0E-03            |            |          |          |           |                | 2.6E-11            | 1           |             |                | 1          |              |             |          |
|          |               |             |                                          | Am-241          | 2.6E-09            | 1.0E-03            |            |          |          |           |                | 2.6E-12            | 1           |             |                |            |              |             |          |
|          |               |             |                                          | U-234           | 7.3E-10            | 1.0E-03            |            |          |          |           | -              | 7.3E-13            |             |             |                | -          |              |             |          |
|          |               |             |                                          | U-235           | 4.3E-11            | 1.0E-03            | -          |          |          |           | +              | 4.3E-14            | 1           |             |                | -          |              |             |          |
|          |               |             |                                          | U-238           | 1.3E-10            | 1.0E-03            |            |          |          |           | +              | 1.3E-13            |             |             |                |            |              |             |          |
|          |               |             |                                          | Pu-239<br>Sr-90 | 2.4E-08<br>4.9E-10 | 1.0E-03            | -          |          |          |           | +              | 2.4E-11<br>4.9E-13 | +           |             |                | +          |              |             |          |
|          |               |             |                                          | H-3             | 7.3E-08            | 1.0E-03<br>1.0E-03 |            |          |          |           | +              | 4.9E-13<br>7.3E-11 |             |             |                |            |              |             |          |
|          |               |             |                                          | 11-3            | 1.55-00            | 1.05-03            |            |          |          |           | +              | 7.0=11             |             |             |                | 1          |              |             |          |
|          |               |             |                                          | l               |                    |                    |            | L        |          |           |                |                    | 1           | 1           | l              |            | 1            |             |          |

| Building | Room/Area | Stack ID | Operation                                          | Radionuclides              | Annual Inventory        | Physical           | Stack      | Stack       | Stack        | Control       | Control Device | Estimated          | 10 mrem/y 5       | Site-Wide Dos | se Requirement    | 0.1 mrem/         | y Monitoring  | Requirement           | Source       |
|----------|-----------|----------|----------------------------------------------------|----------------------------|-------------------------|--------------------|------------|-------------|--------------|---------------|----------------|--------------------|-------------------|---------------|-------------------|-------------------|---------------|-----------------------|--------------|
|          |           |          |                                                    |                            | with Potential for      | State              | Height (m) | Diameter    | Velocity     | Device(s)     | Abatement      | Annual Emissions   | Distance to       |               | EDE               | Distance          | Direction     | Unabated              | Category     |
| 151      | 2131      | FHE-47   | Transfer and processing of                         | Gross gamma                | Release (Ci)<br>5.0E-09 | Factor<br>1.0E-03  | 12.8       | (m)<br>0.41 | (m/s)<br>7.8 | None          | Factor<br>1    | (Ci)<br>5.0E-12    | SWMEI (m)<br>1308 | to SWMEI      | (mrem)<br>2.3E-12 | to MEI (m)<br>584 | to MEI<br>WNW | EDE (mrem)<br>4.5E-12 | 1            |
| 131      | 2101      | 11112-47 | ground water samples for                           | Gross alpha                | 2.5E-13                 | 1.0E-03            | 12.0       | 0.41        | 7.0          | None          | ı              | 2.5E-16            | 1300              |               | 2.01-12           | 304               | VVIVV         | 4.JL-12               | + '-         |
|          |           |          | radiochemical analysis                             |                            |                         |                    |            |             |              |               |                |                    |                   |               |                   |                   |               |                       |              |
| 454      | 0404      | EUE FO   | Transfer and processing of                         | 0                          | 0.05.40                 | 1.05.00            | 10.0       | 0.44        | 7.0          | Nama          |                | 0.05.10            | 1000              |               | 105.15            | 504               | NA/NBA/       | 0.45.45               |              |
| 151      | 2131      | FHE-56   | Transfer and processing of glass samples for       | Gross gamma<br>Gross alpha | 6.8E-12<br>3.4E-11      | 1.0E-06<br>1.0E-06 | 12.8       | 0.41        | 7.3          | None          | 1              | 6.8E-18<br>3.4E-17 | 1308              | E             | 4.6E-15           | 584               | WNW           | 9.1E-15               | 1            |
|          |           |          | radiochemical analysis                             | Gross dipila               | 0.12.11                 | 1.02 00            |            |             |              |               |                | 0.12.17            |                   |               |                   |                   |               |                       |              |
|          |           |          |                                                    |                            |                         |                    |            |             |              |               |                |                    |                   |               |                   |                   |               |                       |              |
| 151      | 2133      | FHE-57   | Swipe sample analysis                              | Gross alpha                | 1.4E-14                 | 1.0E-03            | 12.8       | 0.41        | 8.1          | None          | 1              | 1.4E-17            | 1308              | E             | 1.8E-15           | 768               | SW            | 4.5E-15               | 2            |
| 151      | 2143      | FHE-63   | Transfer of standards for                          | H-3                        | 3.6E-12                 | 1.0E-03            | 12.8       | 0.41        | 8.2          | None          | 1              | 3.6E-15            | 1308              | E             | 8.7E-19           | 768               | SW            | 2.1E-18               | 2            |
|          |           |          | the analysis of environmental                      |                            |                         |                    |            |             |              |               |                |                    |                   |               |                   |                   |               |                       |              |
|          |           |          | samples; analysis of standards                     |                            |                         |                    |            |             |              |               |                |                    |                   |               |                   |                   |               |                       |              |
|          |           |          | for environmental samples                          |                            |                         |                    |            |             |              |               |                |                    |                   |               |                   |                   |               |                       | +            |
| 151      | 2147      | FHE-67   | Transfer of yield tracers for                      | Pu-242                     | 7.1E-13                 | 1.0E-03            | 12.8       | 0.41        | 8.0          | None          | 1              | 7.1E-16            | 1308              | E             | 6.5E-14           | 768               | SW            | 1.6E-13               | 2            |
| 151      | 2149      | FHE-78   | Transfer of violal transers                        | Pu-238                     | 2.0E-14                 | 1.0E-03            | 13.1       | 0.41        | 7.8          | None          | 1              | 2.0E-17            | 1308              | E             | 6.0E-13           | 768               | SW            | 1.5E-12               | 2            |
| 151      | 2149      | FHE-76   | Transfer of yield tracers samples as yield tracers | Pu-239                     | 4.0E-14                 | 1.0E-03            | 13.1       | 0.41        | 7.6          | None          | l              | 4.0E-17            | 1306              |               | 0.0E-13           | 700               | SVV           | 1.3E-12               |              |
|          |           |          | during analysis                                    | Pu-240                     | 4.0E-14                 | 1.0E-03            |            |             |              |               |                | 4.0E-17            |                   |               |                   |                   |               |                       |              |
|          |           |          |                                                    | Pu-242                     | 3.0E-12                 | 1.0E-03            |            |             |              |               |                | 3.0E-15            |                   |               |                   |                   |               |                       |              |
|          |           |          |                                                    | U-232<br>U-233             | 1.0E-12<br>9.0E-13      | 1.0E-03<br>1.0E-03 |            |             |              |               |                | 1.0E-15<br>9.0E-16 |                   |               |                   |                   |               |                       | +            |
|          |           |          |                                                    | U-238                      | 4.0E-15                 | 1.0E-03            |            |             |              |               |                | 4.0E-18            |                   |               |                   |                   |               |                       | +            |
|          |           |          |                                                    | Cs-134                     | 1.4E-12                 | 1.0E-03            |            |             |              |               |                | 1.4E-15            |                   |               |                   |                   |               |                       |              |
|          |           |          |                                                    | Cs-137                     | 8.1E-13                 | 1.0E-03            |            |             |              |               |                | 8.1E-16            |                   |               |                   |                   |               |                       | +            |
| 151      | 2302A     | FHE-9    | Waste treatability studies                         | H-3                        | 1.0E-04                 | 1.0E-03            | 13.1       | 0.41        | 7.5          | None          | 1              | 1.0E-07            | 1308              | E             | 2.1E-11           | 768               | SW            | 5.9E-11               | 2            |
|          |           |          | ,                                                  | U-235                      | 6.1E-14                 | 1.0E-03            |            | -           |              |               |                | 6.1E-17            |                   |               |                   |                   |               |                       |              |
| 151      | 2308      | FHE-16   | Caramias Isaahing atudias                          | Pu-239                     | 1.9E-02                 | 1.0E-03            | 12.8       | 0.41        | 7.3          | Double HEPA   | 0.0001         | 1.9E-09            | 1308              | E             | 3.5E-07           | 768               | SW            | 8.9E-03               | 2            |
| 131      | 2306      | FHE-10   | Ceramics leaching studies                          | Pu-240                     | 4.2E-03                 | 1.0E-03            | 12.0       | 0.41        | 7.3          | Double HEFA   | 0.0001         | 4.2E-10            | 1306              |               | 3.3E-07           | 700               | SVV           | 6.9E-03               |              |
|          |           |          |                                                    | Pu-241                     | 6.8E-02                 | 1.0E-03            |            |             |              |               |                | 6.8E-09            |                   |               |                   |                   |               |                       |              |
|          |           |          |                                                    | Am-241                     | 1.1E-03                 | 1.0E-03            |            |             |              |               |                | 1.1E-10            |                   |               |                   |                   |               |                       |              |
|          |           |          |                                                    | Pu-238<br>U-234            | 5.6E-04<br>2.2E-07      | 1.0E-03<br>1.0E-03 |            |             |              |               |                | 5.6E-11<br>2.2E-14 |                   |               |                   |                   |               |                       | +            |
|          |           |          |                                                    | U-235                      | 9.7E-09                 | 1.0E-03            |            |             |              |               |                | 9.7E-16            |                   |               |                   |                   |               |                       | +            |
|          |           |          |                                                    | U-238                      | 2.1E-07                 | 1.0E-03            |            |             |              |               |                | 2.1E-14            |                   |               |                   |                   |               |                       |              |
| 151      | 2308      | FHE-12   | Ceramics leaching studies                          | U-234                      | 6.6E-07                 | 1.0E-03            | 13.1       | 0.41        | 7.8          | None          | 1              | 6.6E-10            | 1308              | E             | 5.9E-08           | 768               | SW            | 1.4E-07               | 2            |
| 101      | 2000      | 1112 12  | Coramics leading statics                           | U-235                      | 2.9E-08                 | 1.0E-03            | 10.1       | 0.41        | 7.0          | 140110        | ,              | 2.9E-11            | 1000              |               | 0.02 00           | 700               | 011           | 1.42 07               | <del>-</del> |
|          |           |          |                                                    | U-238                      | 6.1E-07                 | 1.0E-03            |            |             |              |               |                | 6.1E-10            |                   |               |                   |                   |               |                       |              |
| 151      | 2312      | FHE-21   | Solubility studies                                 | Np-237                     | 2.7E-08                 | 1.0E-03            | 12.8       | 0.41        | 7.6          | Double HEPA   | 0.0001         | 2.7E-15            | 1308              | E             | 4.9E-13           | 768               | SW            | 1.2E-08               | 2            |
|          | 2012      |          | Columny clauses                                    |                            | 2.72 00                 |                    | 12.0       | 0           | 7.0          | Double 112171 | 0.000.         | 2.72 10            |                   |               |                   |                   | 0             |                       |              |
| 151      | 2312      | FHE-21   | Solubility studies                                 | Np-237                     | 6.4E-09                 | 1.0E-03            | 12.8       | 0.41        | 7.1          | None          | 1              | 6.4E-12            | 1308              | E             | 1.2E-09           | 768               | SW            | 3.0E-09               | 2            |
| 151      | 2318      | FHE-22   | Transfer of sample solutions                       | Pu-242                     | 1.9E-09                 | 1.0E-03            | 9.8        | 0.41        | 8.0          | Double HEPA   | 0.0001         | 1.9E-16            | 1308              | E             | 2.5E-14           | 768               | SW            | 7.8E-10               | 2            |
|          |           | F11F 00  |                                                    |                            |                         |                    |            |             |              |               |                |                    |                   |               |                   |                   | ~             |                       |              |
| 151      | 2322      | FHE-38   | Transfer and processing of of waste sludge samples | Cs-137<br>Co-60            | 3.4E-07<br>1.7E-08      | 1.0E-03<br>1.0E-03 | 12.8       | 0.41        | 8.1          | None          | 1              | 3.4E-10<br>1.7E-11 | 1308              | E             | 5.6E-09           | 768               | SW            | 1.4E-08               | 2            |
|          |           |          | for TCLP, STLC, pH, % moisture,                    | Sr-90                      | 1.8E-07                 | 1.0E-03            |            |             |              |               |                | 1.8E-10            |                   |               |                   |                   |               |                       | +            |
|          |           |          | TTLC analyses                                      | Th-228                     | 1.3E-11                 | 1.0E-03            |            |             |              |               |                | 1.3E-14            |                   |               |                   |                   |               |                       |              |
|          |           |          |                                                    | Th-230<br>Th-232           | 3.9E-11<br>2.8E-12      | 1.0E-03<br>1.0E-03 |            |             |              |               |                | 3.9E-14<br>2.8E-15 |                   |               |                   |                   |               |                       | +            |
|          |           |          |                                                    | Pu-238                     | 3.9E-10                 | 1.0E-03            |            |             |              |               |                | 3.9E-13            |                   |               |                   |                   |               |                       | +            |
|          |           |          |                                                    | Pu-239                     | 1.8E-08                 | 1.0E-03            |            |             |              |               |                | 1.8E-11            |                   |               |                   |                   |               |                       |              |
|          |           |          |                                                    | Pu-240                     | 1.1E-08                 | 1.0E-03            |            |             |              |               |                | 1.1E-11            |                   |               |                   |                   |               |                       |              |
|          |           |          |                                                    | Pu-241<br>Am-241           | 9.4E-09<br>9.4E-10      | 1.0E-03<br>1.0E-03 |            |             |              |               |                | 9.4E-12<br>9.4E-13 |                   |               |                   |                   |               |                       | +            |
|          |           |          |                                                    | U-234                      | 2.6E-10                 | 1.0E-03            |            |             |              |               |                | 2.6E-13            |                   |               |                   |                   |               |                       | +            |
|          |           |          |                                                    | U-235                      | 1.5E-11                 | 1.0E-03            |            |             |              |               |                | 1.5E-14            |                   |               |                   |                   |               |                       |              |
|          |           |          |                                                    | U-238                      | 4.7E-11                 | 1.0E-03            | -          |             |              |               |                | 4.7E-14<br>9.0E-12 |                   |               |                   |                   |               |                       | +            |
|          |           |          |                                                    | Gross alpha<br>Gross beta  | 9.0E-09<br>2.1E-10      | 1.0E-03<br>1.0E-03 |            |             |              |               |                | 9.0E-12<br>2.1E-13 |                   |               |                   |                   |               |                       | +            |
|          |           |          |                                                    | H-3                        | 2.1E-08                 | 1.0E-03            |            |             |              |               |                | 2.1E-11            |                   |               |                   |                   |               |                       |              |
| 451      | 0000      |          | Ohamiaal a di ii ii                                | 0- 107                     | 0.05.07                 | 1.05.00            | 46.0       | 0.44        | 7.0          | N             |                | 0.05.07            | 1000              | + = 1         | 0.05.00           | 700               | C**           | 0.05.05               | +            |
| 151      | 2326      | FHE-39   | Chemical analysis of waste                         | Cs-137<br>Co-60            | 3.8E-07<br>1.8E-08      | 1.0E+00<br>1.0E+00 | 12.8       | 0.41        | 7.6          | None          | 1              | 3.8E-07<br>1.8E-08 | 1308              | E             | 8.8E-06           | 768               | SW            | 2.2E-05               | 2            |
|          |           |          |                                                    | Sr-90                      | 2.0E-07                 | 1.0E+00            |            |             |              |               |                | 2.0E-07            |                   |               |                   |                   |               |                       |              |
|          |           |          |                                                    | Th-228                     | 1.5E-11                 | 1.0E+00            |            |             |              |               |                | 1.5E-11            |                   |               |                   |                   |               |                       | $\perp$      |
|          |           |          |                                                    | Th-230<br>Th-232           | 4.3E-11<br>3.0E-12      | 1.0E+00<br>1.0E+00 |            |             |              |               |                | 4.3E-11<br>3.0E-12 |                   |               |                   |                   |               |                       | +            |
|          |           |          |                                                    | Pu-238                     | 3.0E-12<br>4.4E-10      | 1.0E+00<br>1.0E+00 |            |             |              |               |                | 3.0E-12<br>4.4E-10 |                   |               |                   |                   |               |                       | +            |
|          |           |          | L                                                  | 1 u-230                    | +.4∟-10                 | 1.02+00            | 1          | L           | 1            | 1             | 1              | 7.4∟-10            |                   |               |                   | 1                 |               |                       |              |

|                                                                             | Room/Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stack ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Radionuclides                                                                                                                                                                                                                                  | Annual Inventory                                                                                                                                                                    | Physical                                 | Stack                                                                     | Stack                                                        | Stack                                                | Control                      | Control Device         | Estimated                                                                                                                                                                    | 10 IIII e III/y 3    | site-wide Dos | se Requirement                                      | 0.1 11116111/     | y wontoning | Requirement                              | Source  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|-----------------------------------------------------|-------------------|-------------|------------------------------------------|---------|
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                | with Potential for                                                                                                                                                                  | State                                    | Height (m)                                                                | Diameter                                                     | Velocity                                             | Device(s)                    | Abatement              | Annual Emissions                                                                                                                                                             | Distance to          | Direction     | EDE                                                 | Distance          | Direction   | Unabated                                 | Categor |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                | Release (Ci)                                                                                                                                                                        | Factor                                   |                                                                           | (m)                                                          | (m/s)                                                |                              | Factor                 | (Ci)                                                                                                                                                                         | SWMEI (m)            | to SWMEI      | (mrem)                                              | to MEI (m)        | to MEI      | EDE (mrem)                               |         |
| 151                                                                         | 2326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pu-239                                                                                                                                                                                                                                         | 2.0E-08                                                                                                                                                                             | 1.0E+00                                  |                                                                           |                                                              |                                                      |                              |                        | 2.0E-08                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pu-240                                                                                                                                                                                                                                         | 1.2E-08                                                                                                                                                                             | 1.0E+00                                  |                                                                           |                                                              |                                                      |                              |                        | 1.2E-08                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pu-241                                                                                                                                                                                                                                         | 1.0E-08                                                                                                                                                                             | 1.0E+00                                  |                                                                           |                                                              |                                                      |                              |                        | 1.0E-08                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Am-241                                                                                                                                                                                                                                         | 1.0E-09                                                                                                                                                                             | 1.0E+00                                  |                                                                           |                                                              |                                                      |                              |                        | 1.0E-09                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U-234                                                                                                                                                                                                                                          | 2.9E-10                                                                                                                                                                             | 1.0E+00                                  |                                                                           |                                                              |                                                      |                              |                        | 2.9E-10                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U-235                                                                                                                                                                                                                                          | 1.7E-11                                                                                                                                                                             | 1.0E+00                                  |                                                                           |                                                              |                                                      |                              |                        | 1.7E-11                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U-238                                                                                                                                                                                                                                          | 5.2E-11                                                                                                                                                                             | 1.0E+00                                  |                                                                           |                                                              |                                                      |                              |                        | 5.2E-11                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gross alpha                                                                                                                                                                                                                                    | 3.0E-08                                                                                                                                                                             | 1.0E+00                                  |                                                                           |                                                              |                                                      |                              |                        | 3.0E-08                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gross beta                                                                                                                                                                                                                                     | 6.0E-10                                                                                                                                                                             | 1.0E+00                                  |                                                                           |                                                              |                                                      |                              |                        | 6.0E-10                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H-3                                                                                                                                                                                                                                            | 9.0E-08                                                                                                                                                                             | 1.0E+00                                  |                                                                           |                                                              |                                                      |                              |                        | 9.0E-08                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                          |                                                                           |                                                              |                                                      |                              |                        |                                                                                                                                                                              |                      |               |                                                     |                   |             |                                          |         |
| 151                                                                         | 2326A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FHE-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Preparation of environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gross alpha                                                                                                                                                                                                                                    | 1.0E-09                                                                                                                                                                             | 1.0E-03                                  | 12.8                                                                      | 0.30                                                         | 3.9                                                  | None                         | 1                      | 1.0E-12                                                                                                                                                                      | 1308                 | E             | 1.4E-10                                             | 584               | WNW         | 5.4E-10                                  | 2       |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and waste samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                          |                                                                           |                                                              |                                                      |                              |                        |                                                                                                                                                                              |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                          |                                                                           |                                                              |                                                      |                              |                        |                                                                                                                                                                              |                      |               |                                                     |                   |             |                                          |         |
| 151                                                                         | 2330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FHE-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analysis of standards for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pu-239                                                                                                                                                                                                                                         | 3.9E-09                                                                                                                                                                             | 1.0E-03                                  | 12.8                                                                      | 0.41                                                         | 7.5                                                  | None                         | 1                      | 3.9E-12                                                                                                                                                                      | 1308                 | E             | 5.1E-10                                             | 768               | SW          | 1.3E-09                                  | 2       |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | waste samples; analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H-3                                                                                                                                                                                                                                            | 5.7E-12                                                                                                                                                                             | 1.0E-03                                  |                                                                           |                                                              |                                                      |                              |                        | 5.7E-15                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of waste samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H-3                                                                                                                                                                                                                                            | 9.0E-09                                                                                                                                                                             | 1.0E+00                                  |                                                                           |                                                              |                                                      |                              |                        | 9.0E-09                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                          |                                                                           |                                                              |                                                      |                              |                        |                                                                                                                                                                              |                      |               |                                                     |                   |             |                                          |         |
| 151                                                                         | 2348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FHE-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Freeze trapping/analysis of tritium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H-3                                                                                                                                                                                                                                            | 1.5E-13                                                                                                                                                                             | 1.0E+00                                  | 12.8                                                                      | 0.41                                                         | 8.7                                                  | None                         | 1                      | 1.5E-13                                                                                                                                                                      | 1308                 | E             | 3.7E-17                                             | 768               | SW          | 8.7E-17                                  | 2       |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H-3                                                                                                                                                                                                                                            | 3.6E-12                                                                                                                                                                             | 1.0E-03                                  |                                                                           |                                                              |                                                      |                              |                        | 3.6E-15                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                          |                                                                           |                                                              |                                                      |                              |                        |                                                                                                                                                                              |                      |               |                                                     |                   |             |                                          |         |
| 151                                                                         | 2350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FHE-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Transfer of tracer solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pu-242                                                                                                                                                                                                                                         | 1.2E-12                                                                                                                                                                             | 1.0E-03                                  | 12.8                                                                      | 0.41                                                         | 8.4                                                  | None                         | 1                      | 1.2E-15                                                                                                                                                                      | 1308                 | E             | 4.6E-13                                             | 768               | SW          | 1.1E-12                                  | 2       |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Am-243                                                                                                                                                                                                                                         | 5.7E-13                                                                                                                                                                             | 1.0E-03                                  |                                                                           |                                                              |                                                      |                              |                        | 5.7E-16                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U-232                                                                                                                                                                                                                                          | 3.3E-13                                                                                                                                                                             | 1.0E-03                                  |                                                                           |                                                              |                                                      |                              |                        | 3.3E-16                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pu-239                                                                                                                                                                                                                                         | 7.3E-13                                                                                                                                                                             | 1.0E-03                                  |                                                                           |                                                              |                                                      |                              |                        | 7.3E-16                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Am-241                                                                                                                                                                                                                                         | 8.6E-14                                                                                                                                                                             | 1.0E-03                                  |                                                                           |                                                              |                                                      |                              |                        | 8.6E-17                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U-234                                                                                                                                                                                                                                          | 6.8E-11                                                                                                                                                                             | 1.0E-03                                  |                                                                           |                                                              |                                                      |                              |                        | 6.8E-14                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U-235                                                                                                                                                                                                                                          | 8.5E-09                                                                                                                                                                             | 1.0E-03                                  |                                                                           |                                                              |                                                      |                              |                        | 8.5E-12                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U-238                                                                                                                                                                                                                                          | 1.2E-06                                                                                                                                                                             | 1.0E-03                                  |                                                                           |                                                              |                                                      |                              |                        | 1.2E-09                                                                                                                                                                      |                      |               |                                                     |                   |             |                                          |         |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                          |                                                                           |                                                              |                                                      |                              |                        |                                                                                                                                                                              |                      |               |                                                     |                   |             |                                          |         |
| I                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                          |                                                                           |                                                              |                                                      |                              |                        |                                                                                                                                                                              |                      |               |                                                     |                   |             |                                          |         |
| aross alp                                                                   | ha and Gross beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | emissions are continuously mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r Laser Isotope Separation (U-AVLIS) printered at the stack. Monitoring data, rational control of the stack o | her than the invento                                                                                                                                                                                                                           | ory approach, are used                                                                                                                                                              |                                          |                                                                           | C). In June 1999                                             | , USEC suspend                                       | ed further developm          | ent of the U-AVLIS     | technology.                                                                                                                                                                  |                      |               |                                                     |                   |             |                                          |         |
| Gross alp<br>Because                                                        | ha and Gross beta<br>monitoring takes pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | emissions are continuously mon<br>ace after HEPA filtration, an una                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nitored at the stack. Monitoring data, rational abated EDE cannot be determined (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | her than the invento<br>discussion on page                                                                                                                                                                                                     | ory approach, are used 38.)                                                                                                                                                         | to determine                             | e emissions.                                                              |                                                              |                                                      |                              |                        |                                                                                                                                                                              | **                   | **            | 0.05.00                                             | **                | **          | **                                       | 2       |
| aross alp                                                                   | ha and Gross beta<br>monitoring takes pla<br>103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | emissions are continuously mon<br>ace after HEPA filtration, an una<br>FFE-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nitored at the stack. Monitoring data, rath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | her than the inventor<br>discussion on page<br>Gross alpha                                                                                                                                                                                     | ory approach, are used                                                                                                                                                              | to determine                             | e emissions.                                                              | 0.61                                                         | 4.5                                                  | ed further developm          | 1.0E-02                | 0.0E+00                                                                                                                                                                      | **                   | **            | 0.0E+00                                             | **                | **          | **                                       | 3       |
| Gross alp<br>Because                                                        | ha and Gross beta<br>monitoring takes plants<br>103<br>103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | emissions are continuously mon<br>ace after HEPA filtration, an una<br>FFE-02<br>FFE-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nitored at the stack. Monitoring data, rational abated EDE cannot be determined (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | her than the invento<br>discussion on page                                                                                                                                                                                                     | ory approach, are used 38.)                                                                                                                                                         | to determine                             | 9.4<br>9.4                                                                | 0.61                                                         | 4.5                                                  |                              |                        |                                                                                                                                                                              | **                   | **            | 0.0E+00                                             | **                | **          | **                                       | 3       |
| Gross alp<br>Because                                                        | ha and Gross beta<br>monitoring takes plants<br>103<br>103<br>112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | emissions are continuously mon<br>ace after HEPA filtration, an una<br>FFE-02<br>FFE-01<br>FHE-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nitored at the stack. Monitoring data, rational abated EDE cannot be determined (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | her than the inventor<br>discussion on page<br>Gross alpha                                                                                                                                                                                     | ory approach, are used                                                                                                                                                              | to determine                             | 9.4<br>9.4<br>6.8                                                         | 0.61<br>0.61<br>0.36                                         | 4.5<br>4.6<br>6.4                                    |                              |                        | 0.0E+00                                                                                                                                                                      | **                   | **            | 0.0E+00                                             | **                | **          | **                                       | 3       |
| Gross alp<br>Because                                                        | ha and Gross beta<br>monitoring takes plands<br>103<br>103<br>112<br>112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | emissions are continuously mon<br>ace after HEPA filtration, an una<br>FFE-02<br>FFE-01<br>FHE-02<br>FHE-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nitored at the stack. Monitoring data, rati<br>abated EDE cannot be determined (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | her than the inventor<br>discussion on page<br>Gross alpha                                                                                                                                                                                     | ory approach, are used                                                                                                                                                              | to determine                             | 9.4<br>9.4<br>6.8<br>6.7                                                  | 0.61<br>0.61<br>0.36<br>0.33                                 | 4.5<br>4.6<br>6.4<br>6.4                             |                              |                        | 0.0E+00                                                                                                                                                                      |                      | **            | 0.0E+00                                             |                   | **          | **                                       | 3       |
| Gross alp<br>Because                                                        | ha and Gross beta<br>monitoring takes planes<br>103<br>103<br>112<br>112<br>128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | emissions are continuously mon<br>ace after HEPA filtration, an una<br>FFE-02<br>FFE-01<br>FHE-02<br>FHE-01<br>FHE-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nitored at the stack. Monitoring data, rati<br>abated EDE cannot be determined (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | her than the inventor<br>discussion on page<br>Gross alpha                                                                                                                                                                                     | ory approach, are used                                                                                                                                                              | to determine                             | 9.4<br>9.4<br>6.8<br>6.7<br>8.9                                           | 0.61<br>0.61<br>0.36<br>0.33<br>0.59                         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6                      |                              |                        | 0.0E+00                                                                                                                                                                      | **                   | **            | 0.0E+00                                             | **                | **          |                                          | 3       |
| Gross alp<br>Because                                                        | ha and Gross beta<br>monitoring takes plands<br>103<br>103<br>112<br>112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | emissions are continuously mon<br>ace after HEPA filtration, an una<br>FFE-02<br>FFE-01<br>FHE-02<br>FHE-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nitored at the stack. Monitoring data, rati<br>abated EDE cannot be determined (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | her than the inventor<br>discussion on page<br>Gross alpha                                                                                                                                                                                     | ory approach, are used                                                                                                                                                              | to determine                             | 9.4<br>9.4<br>6.8<br>6.7                                                  | 0.61<br>0.61<br>0.36<br>0.33                                 | 4.5<br>4.6<br>6.4<br>6.4                             |                              |                        | 0.0E+00                                                                                                                                                                      | **                   | **            | 0.0E+00                                             | **                | **          | **                                       | 3       |
| Because                                                                     | ha and Gross beta<br>monitoring takes planes<br>103<br>103<br>112<br>112<br>128<br>128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | emissions are continuously mon<br>ace after HEPA filtration, an una<br>FFE-02<br>FFE-01<br>FHE-02<br>FHE-01<br>FHE-2000<br>FHE-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | itored at the stack. Monitoring data, ratiabated EDE cannot be determined (see  Operations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | her than the invento<br>discussion on page<br>Gross alpha<br>Gross beta                                                                                                                                                                        | ory approach, are used                                                                                                                                                              | NA NA                                    | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9                                    | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59                 | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2               | HEPA                         | 1.0E-02                | 0.0E+00<br>0.0E+00                                                                                                                                                           | **                   | **            |                                                     | **                | **          | **                                       |         |
| Gross alp<br>Because                                                        | ha and Gross beta<br>monitoring takes planes<br>103<br>103<br>112<br>112<br>128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | emissions are continuously mon<br>ace after HEPA filtration, an una<br>FFE-02<br>FFE-01<br>FHE-02<br>FHE-01<br>FHE-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nitored at the stack. Monitoring data, rati<br>abated EDE cannot be determined (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | her than the inventor discussion on page  Gross alpha  Gross beta  Gross alpha                                                                                                                                                                 | ory approach, are used                                                                                                                                                              | NA NA NA                                 | 9.4<br>9.4<br>6.8<br>6.7<br>8.9                                           | 0.61<br>0.61<br>0.36<br>0.33<br>0.59                         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6                      |                              |                        | 0.0E+00<br>0.0E+00                                                                                                                                                           |                      |               | 0.0E+00<br>0.0E+00                                  |                   |             |                                          | 3       |
| Because                                                                     | ha and Gross beta<br>monitoring takes planes<br>103<br>103<br>112<br>112<br>128<br>128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | emissions are continuously mon<br>ace after HEPA filtration, an una<br>FFE-02<br>FFE-01<br>FHE-02<br>FHE-01<br>FHE-2000<br>FHE-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | itored at the stack. Monitoring data, ratiabated EDE cannot be determined (see  Operations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | her than the invento<br>discussion on page<br>Gross alpha<br>Gross beta                                                                                                                                                                        | ory approach, are used a 38.)  *  *  *  *                                                                                                                                           | NA NA                                    | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9                                    | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59                 | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2               | HEPA                         | 1.0E-02                | 0.0E+00<br>0.0E+00                                                                                                                                                           |                      |               |                                                     |                   |             |                                          |         |
| Aross alp<br>Because<br>175                                                 | ha and Gross beta<br>monitoring takes planes<br>103<br>103<br>112<br>112<br>128<br>128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | emissions are continuously mon<br>ace after HEPA filtration, an una<br>FFE-02<br>FFE-01<br>FHE-02<br>FHE-01<br>FHE-2000<br>FHE-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | itored at the stack. Monitoring data, ratiabated EDE cannot be determined (see  Operations discontinued  Operations discontinued  Operations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | her than the inventor discussion on page  Gross alpha Gross beta  Gross alpha Gross beta                                                                                                                                                       | ery approach, are used                                                                                                                                                              | NA NA NA NA NA                           | 9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9                                    | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59                 | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2               | HEPA                         | 1.0E-02                | 0.0E+00<br>0.0E+00                                                                                                                                                           |                      |               |                                                     |                   |             |                                          |         |
| Bross alp<br>Because<br>175<br>177<br>177                                   | ha and Gross beta<br>monitoring takes plants of the control of the co | emissions are continuously mon<br>ace after HEPA filtration, an una<br>FFE-02<br>FFE-01<br>FHE-02<br>FHE-01<br>FHE-2000<br>FHE-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | her than the inventor discussion on page  Gross alpha Gross beta  Gross alpha Gross beta                                                                                                                                                       | ery approach, are used                                                                                                                                                              | NA NA NA NA NA                           | 9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9                                    | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59                 | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2               | HEPA                         | 1.0E-02                | 0.0E+00<br>0.0E+00                                                                                                                                                           |                      |               |                                                     |                   |             |                                          |         |
| Bross alp<br>Because<br>175<br>177<br>177                                   | ha and Gross beta<br>monitoring takes plants of the control of the co | emissions are continuously monace after HEPA filtration, an una  FFE-02  FFE-01  FHE-02  FHE-01  FHE-2000  FHE-1000  FHE-122  Division for the Physics and Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | her than the inventor discussion on page  Gross alpha Gross beta  Gross alpha Gross beta                                                                                                                                                       | ery approach, are used                                                                                                                                                              | NA NA NA NA NA                           | 9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9                                    | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59                 | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2               | HEPA                         | 1.0E-02                | 0.0E+00<br>0.0E+00                                                                                                                                                           |                      |               |                                                     |                   |             |                                          |         |
| Bross alp<br>Because<br>175<br>177<br>177                                   | ha and Gross beta<br>monitoring takes plants of the control of the co | emissions are continuously monace after HEPA filtration, an una  FFE-02  FFE-01  FHE-02  FHE-01  FHE-2000  FHE-1000  FHE-122  Division for the Physics and Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | her than the inventor discussion on page  Gross alpha Gross beta  Gross alpha Gross beta                                                                                                                                                       | ery approach, are used                                                                                                                                                              | NA NA NA NA NA                           | 9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9                                    | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59                 | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2               | HEPA                         | 1.0E-02                | 0.0E+00<br>0.0E+00                                                                                                                                                           |                      |               |                                                     |                   |             |                                          |         |
| Because 175 177 uilding 19 ne accele                                        | ha and Gross beta<br>monitoring takes plants of the control of the co | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-22 FHE-100 FHE-2200 FHE-1000 FHE-1000  FHE-22  Division for the Physics and Spoduce small quantities of short-litration and short-litration are continuously monace and short-litration and short-litration are continuously monace after HEPA filtration, an unace after HEPA filtration are continuously monace and short-litration are con | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  ace Technology Directorate. The facility ived air activation products.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | her than the inventor discussion on page  Gross alpha Gross beta  Gross alpha Gross alpha Gross alpha Gross beta  houses a high-ener                                                                                                           | ery approach, are used as 38.)  *  *  *  gy linear accelerator (                                                                                                                    | NA N | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9<br>6.4                      | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59                 | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2               | HEPA<br>HEPA                 | 1.0E-02                | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00                                                                                                                                     | **                   | **            | 0.0E+00                                             | **                | **          | **                                       | 3       |
| Because 175 177 uilding 19 ne accele                                        | ha and Gross beta<br>monitoring takes plants of the control of the co | emissions are continuously monace after HEPA filtration, an una  FFE-02  FFE-01  FHE-02  FHE-01  FHE-2000  FHE-1000  FHE-2200  FHE-1000  FHE-3000  FHE-3000  FHE-3000  FHE-4000  FHE-3000  | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  ace Technology Directorate. The facility ived air activation products.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | her than the inventor discussion on page  Gross alpha Gross beta  Gross alpha Gross alpha Gross beta  houses a high-ener                                                                                                                       | ery approach, are used as 38.)  *  *  *  *  *  *  *  *  *  *  *  *  *                                                                                                               | NA NA NA LINAC) and r                    | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9<br>6.4                      | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59                 | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2               | HEPA<br>HEPA                 | 1.0E-02                | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00                                                                                                                                     | **                   | **            | 0.0E+00                                             | **                | **          | **                                       | 3       |
| Because 175 177 uilding 19 ne accele                                        | ha and Gross beta<br>monitoring takes plants of the control of the co | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-22 FHE-100 FHE-2200 FHE-1000 FHE-1000  FHE-22  Division for the Physics and Spoduce small quantities of short-litration and short-litration are continuously monace and short-litration and short-litration are continuously monace after HEPA filtration, an unace after HEPA filtration are continuously monace and short-litration are con | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Coperations discontinued  Operations discontinued  Coperations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | her than the inventor discussion on page  Gross alpha Gross beta  Gross alpha Gross alpha Gross beta  houses a high-ener                                                                                                                       | ery approach, are used as 38.)  *  *  *  *  *  *  *  *  *  *  *  *  *                                                                                                               | NA NA NA LINAC) and r                    | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9<br>6.4                      | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59                 | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2               | HEPA<br>HEPA                 | 1.0E-02                | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00                                                                                                                                     | **                   | **            | 0.0E+00                                             | **                | **          | **                                       | 3       |
| 175 177 uilding 19                                                          | ha and Gross beta<br>monitoring takes plane<br>103<br>103<br>112<br>112<br>128<br>128<br>1020<br>94 is operated by Nerator beam can pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-2000 FHE-1000 FHE-22  Division for the Physics and Spuduce small quantities of short-litre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  ace Technology Directorate. The facility ived air activation products.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | her than the inventor discussion on page  Gross alpha Gross beta  Gross alpha Gross beta  Houses a high-ener  O-15 N-13                                                                                                                        | ery approach, are used as 38.)  *  *  *  gy linear accelerator (  6.0E-02  1.1E-01                                                                                                  | NA N | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9<br>6.4                      | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9        | HEPA  HEPA  None             | 0.01                   | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00                                                                                                                          | 1525                 | <br>SSE       | 0.0E+00<br>5.2E-07                                  | 538               | NE NE       | 5.3E-05                                  | 3       |
| 175 177 uilding 19                                                          | ha and Gross beta<br>monitoring takes plane<br>103<br>103<br>112<br>112<br>128<br>128<br>1020<br>94 is operated by Nerator beam can pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-2000 FHE-1000 FHE-22  Division for the Physics and Spuduce small quantities of short-litre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Coperations discontinued  Operations discontinued  Coperations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | her than the inventor discussion on page  Gross alpha Gross beta  Gross alpha Gross beta  Gross alpha Gross beta  houses a high-ener  0-15 N-13  Na-22 U-233                                                                                   | ery approach, are used as 38.)  *  *  *  *  rgy linear accelerator (  6.0E-02  1.1E-01  5.0E-05                                                                                     | NA N | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9<br>6.4                      | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9        | HEPA  HEPA  None             | 0.01                   | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>5.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11                                                                              | 1525                 | <br>SSE       | 0.0E+00<br>5.2E-07                                  | 538               | NE NE       | 5.3E-05                                  | 3       |
| 175 177 uilding 19                                                          | ha and Gross beta<br>monitoring takes plane<br>103<br>103<br>112<br>112<br>128<br>128<br>1020<br>94 is operated by Nerator beam can pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-2000 FHE-1000 FHE-22  Division for the Physics and Spuduce small quantities of short-litre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Coperations discontinued  Operations discontinued  Coperations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gross alpha Gross alpha Gross beta  Gross alpha Gross beta  O-15 N-13  Na-22 U-233 U-234                                                                                                                                                       | ery approach, are used a 38.)  *  *  *  *  *  *  gy linear accelerator (  6.0E-02  1.1E-01  5.0E-05  1.2E-05  6.0E-09                                                               | NA N | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9<br>6.4                      | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9        | HEPA  HEPA  None             | 0.01                   | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>5.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15                                                                   | 1525                 | <br>SSE       | 0.0E+00<br>5.2E-07                                  | 538               | NE NE       | 5.3E-05                                  | 3       |
| 175 177 uilding 19                                                          | ha and Gross beta<br>monitoring takes plane<br>103<br>103<br>112<br>112<br>128<br>128<br>1020<br>94 is operated by Nerator beam can pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-2000 FHE-1000 FHE-22  Division for the Physics and Spuduce small quantities of short-litre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Coperations discontinued  Operations discontinued  Coperations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gross alpha Gross alpha Gross beta  Gross alpha Gross beta  O-15 N-13  Na-22 U-233 U-234 U-235                                                                                                                                                 | ry approach, are used 38.)  *  *  *  *  *  gy linear accelerator (  6.0E-02  1.1E-01  5.0E-05  1.2E-05  6.0E-09  3.9E-06                                                            | NA N | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9<br>6.4                      | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9        | HEPA  HEPA  None             | 0.01                   | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>5.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12                                                        | 1525                 | <br>SSE       | 0.0E+00<br>5.2E-07                                  | 538               | NE NE       | 5.3E-05                                  | 3       |
| 175 177 uilding 19                                                          | ha and Gross beta<br>monitoring takes plane<br>103<br>103<br>112<br>112<br>128<br>128<br>1020<br>94 is operated by Nerator beam can pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-2000 FHE-1000 FHE-22  Division for the Physics and Spuduce small quantities of short-litre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Coperations discontinued  Operations discontinued  Coperations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gross alpha Gross beta  D-15 N-13  Na-22 U-233 U-234 U-235 U-236                                                                                           | y approach, are used 38.)  *  *  *  gy linear accelerator (  6.0E-02 1.1E-01  5.0E-05 1.2E-05 6.0E-09 3.9E-06 3.5E-08                                                               | NA N | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9<br>6.4                      | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9        | HEPA  HEPA  None             | 0.01                   | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>5.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12<br>3.5E-14                                             | 1525                 | <br>SSE       | 0.0E+00<br>5.2E-07                                  | 538               | NE NE       | 5.3E-05                                  | 3       |
| 175 177 uilding 19                                                          | ha and Gross beta<br>monitoring takes plane<br>103<br>103<br>112<br>112<br>128<br>128<br>1020<br>94 is operated by Nerator beam can pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-2000 FHE-1000 FHE-22  Division for the Physics and Spuduce small quantities of short-litre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Coperations discontinued  Operations discontinued  Coperations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gross alpha Gross alpha Gross beta  Gross alpha Gross beta  O-15 N-13  Na-22 U-233 U-234 U-235                                                                                                                                                 | ry approach, are used 38.)  *  *  *  *  *  gy linear accelerator (  6.0E-02  1.1E-01  5.0E-05  1.2E-05  6.0E-09  3.9E-06                                                            | NA N | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9<br>6.4                      | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9        | HEPA  HEPA  None             | 0.01                   | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>5.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12                                                        | 1525                 | <br>SSE       | 0.0E+00<br>5.2E-07                                  | 538               | NE NE       | 5.3E-05                                  | 3       |
| aross alp<br>Because<br>175<br>177<br>uilding 19<br>ne accele<br>194        | ha and Gross beta monitoring takes plants of the monitoring ta    | emissions are continuously monace after HEPA filtration, an una  FFE-02  FFE-01  FHE-02  FHE-01  FHE-2000  FHE-1000  FHE-22  Division for the Physics and Spoduce small quantities of short-li  TE-FE4  (Target Exhaust)  TE-FE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Coperations discontinued  Operations discontinued  Coperations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | her than the inventor discussion on page Gross alpha Gross beta  Gross alpha Gross beta  Gross beta  houses a high-ener  0-15 N-13  Na-22 U-233 U-234 U-235 U-236 U-238                                                                        | x x y y y y y y y y y y y y y y y y y y                                                                                                                                             | NA N | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9<br>6.4<br>esearch laborator | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30<br>ies. | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9        | HEPA  HEPA  None             | 1.0E-02  0.01  1       | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>5.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12<br>3.5E-14<br>1.0E-10                                  | 1525                 | SSE SSE       | 0.0E+00<br>5.2E-07<br>9.7E-09                       | 538               | NE NE       | 5.3E-05<br>1.4E-07                       | 2       |
| 175 177 uilding 19                                                          | ha and Gross beta<br>monitoring takes plane<br>103<br>103<br>112<br>112<br>128<br>128<br>1020<br>94 is operated by Nerator beam can pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-2000 FHE-1000 FHE-22  Division for the Physics and Spuduce small quantities of short-litre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Coperations discontinued  Operations discontinued  Coperations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | her than the inventor discussion on page Gross alpha Gross beta  Gross alpha Gross beta  Gross beta  Anouses a high-ener  O-15 N-13  Na-22 U-233 U-234 U-235 U-236 U-238  O-15                                                                 | x x x y y y y y y y y y y y y y y y y y                                                                                                                                             | NA N | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9<br>6.4<br>esearch laborator | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9        | HEPA  HEPA  None             | 0.01                   | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>5.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12<br>3.5E-14<br>1.0E-10                                  | 1525                 | <br>SSE       | 0.0E+00<br>5.2E-07                                  | 538               | NE NE       | 5.3E-05                                  | 3       |
| aross alp<br>Because<br>175<br>177<br>uilding 19<br>ne accele<br>194        | ha and Gross beta monitoring takes plants of the monitoring ta    | emissions are continuously monace after HEPA filtration, an una  FFE-02  FFE-01  FHE-02  FHE-01  FHE-2000  FHE-1000  FHE-22  Division for the Physics and Spoduce small quantities of short-li  TE-FE4  (Target Exhaust)  TE-FE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Coperations discontinued  Operations discontinued  Coperations discontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | her than the inventor discussion on page Gross alpha Gross beta  Gross alpha Gross beta  Gross beta  houses a high-ener  0-15 N-13  Na-22 U-233 U-234 U-235 U-236 U-238                                                                        | x x y y y y y y y y y y y y y y y y y y                                                                                                                                             | NA N | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9<br>6.4<br>esearch laborator | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30<br>ies. | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9        | HEPA  HEPA  None             | 1.0E-02  0.01  1       | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>5.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12<br>3.5E-14<br>1.0E-10                                  | 1525                 | SSE SSE       | 0.0E+00<br>5.2E-07<br>9.7E-09                       | 538               | NE NE       | 5.3E-05<br>1.4E-07                       | 2       |
| aross alp<br>Because<br>175<br>177<br>177<br>uilding 19<br>ne accele<br>194 | ha and Gross beta monitoring takes plane in the plane in     | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-22 FHE-100 FHE-2200 FHE-1000 FHE-1000  THE-FE4  (Target Exhaust)  TE-FE4  TE-FE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Comparities of the facility ived air activation products.  Linac accelerator vault  Storage  Positron beam generation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | her than the inventor discussion on page Gross alpha Gross beta  Gross alpha Gross beta  Gross alpha Gross beta  Nouses a high-ener  O-15 N-13  Na-22 U-233 U-234 U-235 U-236 U-238  O-15 N-13                                                 | rgy linear accelerator (  6.0E-02 1.1E-01  5.0E-05 6.0E-09 3.9E-06 3.5E-08 1.0E-04                                                                                                  | NA N | 9.4 9.4 6.8 6.7 8.9 8.9 6.4  esearch laborator 30.5                       | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9<br>4.5 | HEPA  HEPA  None  None       | 1.0E-02  0.01  1       | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>6.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12<br>3.5E-14<br>1.0E-10<br>5.5E-01<br>1.1E+00            | 1525                 | SSE SSE       | 0.0E+00<br>5.2E-07<br>9.7E-09                       | 538               | NE NE       | 5.3E-05<br>1.4E-07<br>5.2E-04            | 2       |
| aross alp<br>Because<br>175<br>177<br>uilding 19<br>ne accele<br>194        | ha and Gross beta monitoring takes plants of the monitoring ta    | emissions are continuously monace after HEPA filtration, an una  FFE-02  FFE-01  FHE-02  FHE-01  FHE-2000  FHE-1000  FHE-22  Division for the Physics and Spoduce small quantities of short-li  TE-FE4  (Target Exhaust)  TE-FE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Comparities of the facility discontinued or service of the facility discontinued or service or  | her than the inventor discussion on page Gross alpha Gross beta  Gross alpha Gross beta  Gross beta  Anouses a high-ener  O-15 N-13  Na-22 U-233 U-234 U-235 U-236 U-238  O-15                                                                 | x x x y y y y y y y y y y y y y y y y y                                                                                                                                             | NA N | 9.4<br>9.4<br>9.4<br>6.8<br>6.7<br>8.9<br>8.9<br>6.4<br>esearch laborator | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30<br>ies. | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9        | HEPA  HEPA  None             | 1.0E-02  0.01  1       | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>5.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12<br>3.5E-14<br>1.0E-10                                  | 1525                 | SSE SSE       | 0.0E+00<br>5.2E-07<br>9.7E-09                       | 538               | NE NE       | 5.3E-05<br>1.4E-07                       | 2       |
| aross alp<br>Because<br>175<br>177<br>177<br>uilding 19<br>ne accele<br>194 | ha and Gross beta monitoring takes plane in the plane in     | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-22 FHE-100 FHE-2200 FHE-1000 FHE-1000  THE-FE4  (Target Exhaust)  TE-FE4  TE-FE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Comparities of the facility ived air activation products.  Linac accelerator vault  Storage  Positron beam generation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | her than the inventor discussion on page Gross alpha Gross beta  Gross alpha Gross beta  Gross alpha Gross beta  Nouses a high-ener  O-15 N-13  Na-22 U-233 U-234 U-235 U-236 U-238  O-15 N-13                                                 | rgy linear accelerator (  6.0E-02 1.1E-01  5.0E-05 6.0E-09 3.9E-06 3.5E-08 1.0E-04                                                                                                  | NA N | 9.4 9.4 6.8 6.7 8.9 8.9 6.4  esearch laborator 30.5                       | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9<br>4.5 | HEPA  HEPA  None  None       | 1.0E-02  0.01  1       | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>6.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12<br>3.5E-14<br>1.0E-10<br>5.5E-01<br>1.1E+00            | 1525                 | SSE SSE       | 0.0E+00<br>5.2E-07<br>9.7E-09                       | 538               | NE NE       | 5.3E-05<br>1.4E-07<br>5.2E-04            | 2       |
| 175 177 177 uilding 19 ne accele 194 194                                    | ha and Gross beta monitoring takes plants of the monitoring ta    | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-2000 FHE-1000  FHE-22  Division for the Physics and Spoduce small quantities of short-li  TE-FE4  (Target Exhaust)  TE-FE4  Room Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  ace Technology Directorate. The facility ived air activation products.  Linac accelerator vault  Storage  Positron beam generation  Positron materials science experiments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gross alpha Gross beta  Gross alpha Gross beta  Gross beta  Gross beta  O-15 N-13  Na-22 U-233 U-234 U-235 U-236 U-238  O-15 N-13  Na-15 N-13  Na-22 N-238  O-15 N-13                                                                          | x x x y gy linear accelerator (  6.0E-02 1.1E-01  5.0E-05 1.2E-05 6.0E-09 3.9E-06 3.5E-08 1.0E-04  5.5E-01 1.1E+00  3.6E-06                                                         | NA N | 9.4 9.4 6.8 6.7 8.9 8.9 6.4 esearch laborator 30.5                        | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9<br>4.5 | HEPA  HEPA  None  None       | 1.0E-02  0.01  1       | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>6.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12<br>3.5E-14<br>1.0E-10<br>5.5E-01<br>1.1E+00            | 1525                 | SSE SSE       | 0.0E+00<br>5.2E-07<br>9.7E-09                       | 538               | NE NE       | 5.3E-05<br>1.4E-07<br>5.2E-04            | 2       |
| 177 177 177 194 194 194 194 uilding 21                                      | ha and Gross beta monitoring takes pla  103 103 112 112 128 128 1020  94 is operated by Nerator beam can pro B122  B124  B130  1131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-22 FHE-01 FHE-2200 FHE-1000  FHE-1000  FHE-14  TE-FE4  (Target Exhaust)  TE-FE4  Room Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  ace Technology Directorate. The facility ived air activation products.  Linac accelerator vault  Storage  Positron beam generation  Positron materials science experiments  nology Directorate (formerly the Physical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | her than the inventor discussion on page Gross alpha Gross beta  Gross alpha Gross beta  Anouses a high-ener  O-15 N-13  Na-22 U-233 U-234 U-235 U-236 U-238  O-15 N-13  Na-22  Sciences Directora                                             | ry approach, are used 38.)  *  *  *  *  *  *  *  *  *  *  *  *  *                                                                                                                   | NA N | 9.4 9.4 6.8 6.7 8.9 8.9 6.4 esearch laborator 30.5                        | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9<br>4.5 | HEPA  HEPA  None  None       | 1.0E-02  0.01  1       | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>6.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12<br>3.5E-14<br>1.0E-10<br>5.5E-01<br>1.1E+00            | 1525                 | SSE SSE       | 0.0E+00<br>5.2E-07<br>9.7E-09                       | 538               | NE NE       | 5.3E-05<br>1.4E-07<br>5.2E-04            | 2       |
| 177 177 177 194 194 194 194 uilding 21                                      | ha and Gross beta monitoring takes pla  103 103 112 112 128 128 1020  94 is operated by Nerator beam can pro B122  B124  B130  1131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-22 FHE-01 FHE-2200 FHE-1000  FHE-1000  FHE-14  TE-FE4  (Target Exhaust)  TE-FE4  Room Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  ace Technology Directorate. The facility ived air activation products.  Linac accelerator vault  Storage  Positron beam generation  Positron materials science experiments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | her than the inventor discussion on page Gross alpha Gross beta  Gross alpha Gross beta  Anouses a high-ener  O-15 N-13  Na-22 U-233 U-234 U-235 U-236 U-238  O-15 N-13  Na-22  Sciences Directora                                             | ry approach, are used 38.)  *  *  *  *  *  *  *  *  *  *  *  *  *                                                                                                                   | NA N | 9.4 9.4 6.8 6.7 8.9 8.9 6.4 esearch laborator 30.5                        | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9<br>4.5 | HEPA  HEPA  None  None       | 1.0E-02  0.01  1       | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>6.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12<br>3.5E-14<br>1.0E-10<br>5.5E-01<br>1.1E+00            | 1525                 | SSE SSE       | 0.0E+00<br>5.2E-07<br>9.7E-09                       | 538               | NE NE       | 5.3E-05<br>1.4E-07<br>5.2E-04            | 2       |
| 177  177  uilding 19  ne accele 194  194  194  uilding 21                   | ha and Gross beta monitoring takes plane in the plane in     | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-22 FHE-100 FHE-22  Division for the Physics and Spaduce small quantities of short-litraget Exhaust)  TE-FE4  TE-FE4  Room Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Coperations discontinued  Operations discontinued  In the facility dived air activation products.  Linac accelerator vault  Storage  Positron beam generation  Positron materials science experiments  Cology Directorate (formerly the Physical from past operations of the rotating tark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | her than the inventor discussion on page  Gross alpha Gross beta  Gross alpha Gross beta  Gross alpha Gross beta  Nouses a high-ener  O-15 N-13  Na-22 U-233 U-234 U-235 U-236 U-238  O-15 N-13  Na-22  Sciences Directora get neutron source, | ry approach, are used 38.)  *  *  *  *  *  gy linear accelerator (  6.0E-02  1.1E-01  5.0E-05  6.0E-09  3.9E-06  3.5E-08  1.0E-04  5.5E-01  1.1E+00  3.6E-06  which is no longer in | NA N | 9.4 9.4 9.4 6.8 6.7 8.9 8.9 6.4  esearch laborator 30.5  NA               | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30<br>1.37 | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9<br>4.5 | HEPA  HEPA  None  None  None | 1.0E-02  0.01  1  1  1 | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>6.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12<br>3.5E-14<br>1.0E-10<br>5.5E-01<br>1.1E+00<br>3.6E-09 | 1525<br>1525<br>1525 | SSE SSE ESE   | 0.0E+00<br>5.2E-07<br>9.7E-09<br>5.2E-06<br>2.4E-09 | 538<br>538<br>538 | NE NE W     | 5.3E-05<br>1.4E-07<br>5.2E-04<br>7.0E-08 | 2 2 2   |
| 177 177 177 194 194 194 194 uilding 21                                      | ha and Gross beta monitoring takes pla  103 103 112 112 128 128 1020  94 is operated by Nerator beam can pro B122  B124  B130  1131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-22 FHE-01 FHE-2200 FHE-1000  FHE-1000  FHE-14  TE-FE4  (Target Exhaust)  TE-FE4  Room Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  ace Technology Directorate. The facility ived air activation products.  Linac accelerator vault  Storage  Positron beam generation  Positron materials science experiments  nology Directorate (formerly the Physical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | her than the inventor discussion on page Gross alpha Gross beta  Gross alpha Gross beta  Anouses a high-ener  O-15 N-13  Na-22 U-233 U-234 U-235 U-236 U-238  O-15 N-13  Na-22  Sciences Directora                                             | ry approach, are used 38.)  *  *  *  *  *  *  *  *  *  *  *  *  *                                                                                                                   | NA N | 9.4 9.4 6.8 6.7 8.9 8.9 6.4 esearch laborator 30.5                        | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30         | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9<br>4.5 | HEPA  HEPA  None  None       | 1.0E-02  0.01  1       | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>6.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12<br>3.5E-14<br>1.0E-10<br>5.5E-01<br>1.1E+00            | 1525                 | SSE SSE       | 0.0E+00<br>5.2E-07<br>9.7E-09                       | 538               | NE NE       | 5.3E-05<br>1.4E-07<br>5.2E-04            | 2       |
| 177  177  uilding 19  ne accele 194  194  194  uilding 21                   | ha and Gross beta monitoring takes plane in the plane in     | emissions are continuously monace after HEPA filtration, an una  FFE-02 FFE-01 FHE-02 FHE-01 FHE-22 FHE-100 FHE-22  Division for the Physics and Spaduce small quantities of short-litraget Exhaust)  TE-FE4  TE-FE4  Room Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Operations discontinued  Coperations discontinued  Operations discontinued  In the facility dived air activation products.  Linac accelerator vault  Storage  Positron beam generation  Positron materials science experiments  Cology Directorate (formerly the Physical from past operations of the rotating tark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | her than the inventor discussion on page  Gross alpha Gross beta  Gross alpha Gross beta  Gross alpha Gross beta  Nouses a high-ener  O-15 N-13  Na-22 U-233 U-234 U-235 U-236 U-238  O-15 N-13  Na-22  Sciences Directora get neutron source, | ry approach, are used 38.)  *  *  *  *  *  gy linear accelerator (  6.0E-02  1.1E-01  5.0E-05  6.0E-09  3.9E-06  3.5E-08  1.0E-04  5.5E-01  1.1E+00  3.6E-06  which is no longer in | NA N | 9.4 9.4 9.4 6.8 6.7 8.9 8.9 6.4  esearch laborator 30.5  NA               | 0.61<br>0.61<br>0.36<br>0.33<br>0.59<br>0.59<br>0.30<br>1.37 | 4.5<br>4.6<br>6.4<br>6.4<br>4.6<br>5.2<br>8.9<br>4.5 | HEPA  HEPA  None  None  None | 1.0E-02  0.01  1  1  1 | 0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>0.0E+00<br>6.0E-02<br>1.1E-01<br>5.0E-08<br>1.2E-11<br>6.0E-15<br>3.9E-12<br>3.5E-14<br>1.0E-10<br>5.5E-01<br>1.1E+00<br>3.6E-09 | 1525<br>1525<br>1525 | SSE SSE ESE   | 0.0E+00<br>5.2E-07<br>9.7E-09<br>5.2E-06<br>2.4E-09 | 538<br>538<br>538 | NE NE W     | 5.3E-05<br>1.4E-07<br>5.2E-04<br>7.0E-08 | 2 2 2   |

| Building | Room/Area              | Stack ID                     | Operation                                    | Radionuclides       | Annual Inventory                   | Physical           | Stack             | Stack           | Stack             | Control          | Control Device      | Estimated                |                          |                       | se Requirement | +                      | y Monitoring        |                        | Source   |
|----------|------------------------|------------------------------|----------------------------------------------|---------------------|------------------------------------|--------------------|-------------------|-----------------|-------------------|------------------|---------------------|--------------------------|--------------------------|-----------------------|----------------|------------------------|---------------------|------------------------|----------|
|          |                        |                              |                                              |                     | with Potential for<br>Release (Ci) | State<br>Factor    | Height (m)        | Diameter<br>(m) | Velocity<br>(m/s) | Device(s)        | Abatement<br>Factor | Annual Emissions<br>(Ci) | Distance to<br>SWMEI (m) | Direction<br>to SWMEI | EDE<br>(mrem)  | Distance<br>to MEI (m) | Direction<br>to MEI | Unabated<br>EDE (mrem) | Category |
|          |                        | ·                            | s conducted by the Chemistry and Mate        |                     | rate, Engineering, Wea             |                    | ering, and Safegu |                 |                   | gement Division. | 1 40101             | (5))                     | OTTIVILI (III)           | TO CAMINILI           | (1111-0111)    | 10 MLI (III)           | IO IVILI            | LDL (IIIIGIII)         |          |
| Manageme | nt oversight for Build | ing 231 is provided by the E | ngineering Directorate through the Engir     | eering Sciences Div | ision.                             |                    |                   |                 |                   |                  |                     |                          |                          |                       |                |                        |                     |                        |          |
| 231      | 1000                   | FFE-5                        | Metal casting                                | U-238               | 2.6E-07                            | 1.0E-06            | 8.2               | 0.32            | 7.7               | HEPA             | 0.01                | 2.6E-15                  | 1167                     | E                     | 1.7E-11        | 671                    | W                   | 6.8E-11                | 2        |
|          |                        |                              |                                              | U-235               | 3.3E-09                            | 1.0E-06            |                   |                 |                   |                  |                     | 3.3E-17                  |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | U-234               | 2.4E-08                            | 1.0E-06            |                   |                 |                   |                  |                     | 2.4E-16                  |                          |                       |                |                        |                     |                        |          |
| 231      | 1427                   | Room Air                     | Wet grinding/lapping                         | U-238               | 3.1E-07                            | 1.0E-06            | NA                | NA              | NA                | None             | 1                   | 3.1E-13                  | 1167                     | E                     | 4.3E-11        | 671                    | W                   | 3.6E-10                | 2        |
|          |                        | 11001117111                  | mot gimanig, iapping                         | U-235               | 1.5E-08                            | 1.0E-06            |                   |                 |                   | 110110           |                     | 1.5E-14                  |                          | _                     |                | 07.                    |                     | 0.02.10                | _        |
|          |                        |                              |                                              | U-234               | 3.3E-07                            | 1.0E-06            |                   |                 |                   |                  |                     | 3.3E-13                  |                          |                       |                |                        |                     |                        |          |
| 004      | 1000                   | Danie Air                    | Friedra dest en estid                        | 11.000              | 1.55.00                            | 1.05.00            | NIA.              | N/A             | NIA.              | Mana             |                     | 4.55.00                  | 1107                     | -                     | 1.15.07        | 074                    | 14/                 | 0.05.07                |          |
| 231      | 1600                   | Room Air                     | Friction test on solid depleted uranium bars | U-238<br>U-235      | 1.5E-03<br>1.9E-02                 | 1.0E-06<br>1.0E-06 | NA                | NA              | NA                | None             | 1                   | 1.5E-09<br>1.9E-08       | 1167                     | E                     | 1.1E-07        | 671                    | W                   | 8.8E-07                | 2        |
|          |                        |                              | doploted diamani baro                        | U-234               | 1.4E-01                            | 1.0E-06            |                   |                 |                   |                  |                     | 1.4E-07                  |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              |                     |                                    |                    |                   |                 |                   |                  |                     |                          |                          |                       |                |                        |                     |                        |          |
| 231      | 1640                   | Room Air                     | Mechanical test; quasistatic                 | U-238<br>U-235      | 5.9E-09<br>7.6E-11                 | 1.0E-06<br>1.0E-06 | NA                | NA              | NA                | None             | 1                   | 5.9E-15<br>7.6E-17       | 1167                     | E                     | 4.1E-13        | 671                    | W                   | 3.4E-12                | 2        |
|          |                        |                              | compression                                  | U-234               | 5.5E-10                            | 1.0E-06            |                   |                 |                   |                  |                     | 7.6E-17<br>5.5E-16       |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | 0 20 .              | 0.02 10                            |                    |                   |                 |                   |                  |                     | 0.02 10                  |                          |                       |                |                        |                     |                        |          |
| 231      | 1678                   | Room Air                     | Mechanical test; compression                 | U-238               | 6.8E-09                            | 1.0E-06            | NA                | NA              | NA                | None             | 1                   | 6.8E-15                  | 1167                     | E                     | 4.7E-13        | 671                    | W                   | 3.9E-12                | 2        |
|          |                        |                              | Hopkinson bar (U6Nb)                         | U-235               | 8.7E-11                            | 1.0E-06            |                   |                 |                   |                  |                     | 8.7E-17                  |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | U-234               | 6.3E-10                            | 1.0E-06            | +                 |                 |                   |                  |                     | 6.3E-16                  |                          |                       |                |                        |                     |                        |          |
| 231      | 1737                   | FGBE-5                       | Electron beam welding                        | U-238               | 1.5E-06                            | 1.0E-06            | 10.1              | 0.46            | 1.5               | HEPA             | 0.01                | 1.5E-14                  | 1167                     | E                     | 1.0E-12        | 671                    | W                   | 5.6E-10                | 2        |
|          |                        | -                            |                                              | U-235               | 1.9E-08                            | 1.0E-06            |                   |                 |                   |                  |                     | 1.9E-16                  |                          |                       |                |                        |                     | -                      |          |
|          |                        |                              |                                              | U-234               | 1.4E-07                            | 1.0E-06            |                   |                 |                   |                  |                     | 1.4E-15                  |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | U-238<br>U-235      | 8.1E-11<br>1.0E-12                 | 1.0E-03<br>1.0E-03 |                   |                 |                   |                  |                     | 8.1E-16<br>1.0E-17       |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | U-234               | 7.5E-12                            | 1.0E-03            |                   |                 |                   |                  |                     | 7.5E-17                  |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              |                     |                                    |                    |                   |                 |                   |                  |                     |                          |                          |                       |                |                        |                     |                        |          |
| 231      | 1737A                  | FHE-54                       | Electron beam welding                        | U-238               | 1.5E-06                            | 1.0E-06            | 10.1              | 0.46            | 1.5               | HEPA             | 0.01                | 1.5E-14                  | 1167                     | E                     | 1.0E-12        | 671                    | W                   | 5.6E-10                | 2        |
|          |                        |                              |                                              | U-235<br>U-234      | 1.9E-08<br>1.4E-07                 | 1.0E-06<br>1.0E-06 |                   |                 |                   |                  |                     | 1.9E-16<br>1.4E-15       |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | U-238               | 8.1E-11                            | 1.0E-03            |                   |                 |                   |                  |                     | 8.1E-16                  |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | U-235               | 1.0E-12                            | 1.0E-03            |                   |                 |                   |                  |                     | 1.0E-17                  |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | U-234               | 7.5E-12                            | 1.0E-03            |                   |                 |                   |                  |                     | 7.5E-17                  |                          |                       |                |                        |                     |                        |          |
| 231      | 1737B                  | FHE-54                       | Electron beam welding                        | U-238               | 1.7E-07                            | 1.0E-03            | 10.1              | 0.46            | 11.5              | HEPA             | 0.01                | 1.7E-12                  | 1167                     | E                     | 1.1E-10        | 671                    | W                   | 6.0E-08                | 2        |
| 201      | 17075                  | TTIL-04                      | Electron beam welding                        | U-235               | 2.2E-09                            | 1.0E-03            | 10.1              | 0.40            | 11.5              | TILLY            | 0.01                | 2.2E-14                  | 1107                     |                       | 1.12-10        | 071                    | **                  | 0.02-00                |          |
|          |                        |                              |                                              | U-234               | 1.6E-08                            | 1.0E-03            |                   |                 |                   |                  |                     | 1.6E-13                  |                          |                       |                |                        |                     |                        |          |
|          |                        | 5055                         |                                              |                     |                                    |                    |                   |                 |                   |                  |                     |                          |                          |                       |                |                        |                     |                        |          |
| 231      | 1739                   | FGBE-5                       | Storage                                      | U-238<br>U-235      | 1.5E-07<br>2.0E-09                 | 1.0E-06<br>1.0E-06 | 10.1              | 0.46            | 11.5              | HEPA             | 0.01                | 1.5E-15<br>2.0E-17       | 1167                     | E                     | 1.0E-13        | 671                    | W                   | 5.4E-11                | 2        |
|          |                        |                              |                                              | U-234               | 1.4E-08                            | 1.0E-06            |                   |                 |                   |                  |                     | 1.4E-16                  |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              |                     |                                    |                    |                   |                 |                   |                  |                     |                          |                          |                       |                |                        |                     |                        |          |
| 231      | 1900HB                 | FGBE-7/8                     | Storage                                      | U-238               | 4.9E-06                            | 1.0E-06            | 2.4               | 0.20            | 14.4              | None             | 1                   | 4.9E-12                  | 1167                     | E                     | 3.3E-10        | 671                    | W                   | 2.2E-09                | 2        |
|          |                        |                              |                                              | U-235<br>U-234      | 6.3E-08<br>3.0E-07                 | 1.0E-06<br>1.0E-06 |                   |                 |                   |                  |                     | 6.3E-14<br>3.0E-13       |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | 0-204               | J.UL-07                            | 1.02-00            |                   |                 |                   |                  |                     | J.UE-10                  |                          |                       |                |                        |                     |                        |          |
| 231      | 1944A                  | Room Air                     | Mechanical testing                           | U-238               | 1.3E-07                            | 1.0E-06            | NA                | NA              | NA                | None             | 1                   | 1.3E-13                  | 1167                     | Е                     | 9.2E-12        | 671                    | W                   | 7.6E-11                | 2        |
|          |                        |                              |                                              | U-235               | 1.7E-09                            | 1.0E-06            |                   |                 |                   |                  |                     | 1.7E-15                  |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | U-234               | 1.3E-08                            | 1.0E-06            |                   |                 |                   |                  |                     | 1.3E-14                  |                          |                       |                |                        |                     |                        |          |
| 231      | 1945                   | FHE-40                       | Metal characterization                       | U-238               | 2.0E-09                            | 1.0E-06            | 10.7              | 0.36            | 3.8               | None             | 1                   | 2.0E-15                  | 1167                     | E                     | 1.3E-13        | 671                    | W                   | 5.4E-13                | 2        |
|          |                        |                              |                                              | U-235               | 2.6E-11                            | 1.0E-06            |                   |                 |                   |                  |                     | 2.6E-17                  |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | U-234               | 1.9E-10                            | 1.0E-06            | -                 |                 |                   |                  |                     | 1.9E-16                  |                          |                       |                |                        |                     |                        |          |
| 231      | 1945A                  | Room Air                     | Metal characterization                       | U-238               | 2.0E-12                            | 1.0E-06            | NA                | NA              | NA                | None             | 1                   | 2.0E-18                  | 1167                     | E                     | 1.4E-16        | 671                    | W                   | 1.2E-15                | 2        |
| 231      | 10-104                 | HOOM All                     | Motal Gharacterization                       | U-235               | 2.6E-14                            | 1.0E-06            | 140               | 140             | 14/7              | 110116           | '                   | 2.6E-20                  | 1107                     | _                     | 1.42-10        | 071                    | ***                 | 1.22-10                | _        |
|          |                        |                              |                                              | U-234               | 1.9E-13                            | 1.0E-06            |                   |                 |                   |                  |                     | 1.9E-19                  |                          |                       |                |                        |                     |                        |          |
| 004      | 10455                  | FUE 40                       | Motel share-taile-time                       | 11.000              | 1 45 00                            | 1.05.00            | 10.0              | 0.44            | 4.0               | Nie              | _                   | 1.45.10                  | 1107                     | -                     | 0.05.44        | 674                    | 147                 | 2.55.42                | 0        |
| 231      | 1945B                  | FHE-40                       | Metal characterization                       | U-238<br>U-235      | 1.4E-09<br>1.7E-11                 | 1.0E-03<br>1.0E-03 | 10.0              | 0.41            | 4.6               | None             | 1                   | 1.4E-12<br>1.7E-14       | 1167                     | E                     | 8.9E-11        | 671                    | W                   | 3.5E-10                | 2        |
|          |                        |                              |                                              | U-234               | 1.3E-10                            | 1.0E-03            |                   |                 |                   |                  |                     | 1.3E-13                  |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              |                     |                                    |                    |                   |                 |                   |                  |                     |                          |                          |                       |                |                        |                     |                        |          |
| 231      | 1945C                  | Room Air                     | Metal characterization                       | U-238               | 2.0E-12                            | 1.0E-06            | NA                | NA              | NA                | None             | 1                   | 2.0E-18                  | 1167                     | E                     | 1.4E-16        | 671                    | W                   | 1.2E-15                | 2        |
|          |                        |                              |                                              | U-235<br>U-234      | 2.6E-14<br>1.9E-13                 | 1.0E-06<br>1.0E-06 | -                 |                 |                   |                  |                     | 2.6E-20<br>1.9E-19       |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | 0-204               | 1.52-10                            | 1.02-00            |                   |                 |                   |                  |                     | 1.56-15                  |                          |                       |                |                        |                     |                        |          |
| 231      | 1945D                  | Room Air                     | Metal polishing                              | U-238               | 2.0E-09                            | 1.0E-06            | NA                | NA              | NA                | None             | 1                   | 2.0E-15                  | 1167                     | E                     | 1.4E-13        | 671                    | W                   | 1.2E-12                | 2        |
|          |                        |                              |                                              | U-235               | 2.6E-11                            | 1.0E-06            |                   |                 |                   |                  |                     | 2.6E-17                  |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | U-234               | 1.9E-10                            | 1.0E-06            |                   |                 |                   |                  | -                   | 1.9E-16                  |                          |                       |                |                        |                     |                        |          |
|          |                        |                              |                                              | <u> </u>            |                                    |                    | 1                 | L               | 1                 |                  |                     | <u> </u>                 | l                        | 1                     |                |                        |                     | 1                      |          |

|                           | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Radionuclides                                                       | Annual Inventory        | Physical           | Stack             | Stack                | Stack            | Control                | Control Device | Estimated                             | 10 mrem/y S | Site-Wide Dos | e Requirement | 0.1 mrem/  | y Monitoring | Requirement Properties 1985 | Source      |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------|--------------------|-------------------|----------------------|------------------|------------------------|----------------|---------------------------------------|-------------|---------------|---------------|------------|--------------|-----------------------------|-------------|
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     | with Potential for      | State              | Height (m)        | Diameter             | Velocity         | Device(s)              | Abatement      | Annual Emissions                      | Distance to | Direction     | EDE           | Distance   | Direction    | Unabated                    | Category    |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     | Release (Ci)            | Factor             | <u> </u>          | (m)                  | (m/s)            |                        | Factor         | (Ci)                                  | SWMEI (m)   | to SWMEI      | (mrem)        | to MEI (m) | to MEI       | EDE (mrem)                  |             |
| Room Air                  | Wet grinding/polishing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U-238                                                               | 2.0E-06                 | 1.0E-03            | NA                | NA                   | NA               | None                   | 1              | 2.0E-09                               | 1167        | E             | 1.4E-07       | 671        | W            | 1.2E-06                     | 2           |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-235                                                               | 2.6E-08                 | 1.0E-03            |                   |                      |                  |                        |                | 2.6E-11                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-234                                                               | 1.9E-07                 | 1.0E-03            |                   |                      |                  |                        |                | 1.9E-10                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |                         |                    |                   |                      |                  |                        |                |                                       |             |               |               |            |              |                             |             |
|                           | Directorate. Operations in the facility i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                         | surface, and s     | ubsurface; precis | sion cutting, ion in | nplanting, and r | netallurgical studies. |                |                                       |             |               |               |            |              |                             |             |
| ding is used for charact  | cterization studies; some is used for ic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n beam implantation                                                 | experiments.            |                    |                   |                      |                  |                        |                |                                       |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |                         |                    |                   |                      |                  |                        |                |                                       |             |               |               |            |              |                             |             |
| 1A/1B, FHE2A/2B,          | Surface analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U-234                                                               | 1.5E-11                 | 1.0E-06            | 10.7              | 2.75                 | 4.0              | None                   | 1              | 1.5E-17                               | 1065        | ENE           | 1.3E-14       | 556        | SW           | 1.3E-14                     | 2           |
| FGBE-1A/1B                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-235                                                               | 2.1E-12                 | 1.0E-06            |                   |                      |                  |                        |                | 2.1E-18                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-238                                                               | 1.6E-10                 | 1.0E-06            |                   |                      |                  |                        |                | 1.6E-16                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     | <u> </u>                |                    |                   |                      |                  |                        |                |                                       |             |               |               |            |              |                             |             |
|                           | tored at the stack. Monitoring data, rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                         | to determine       | emissions.        |                      |                  |                        |                |                                       |             |               |               |            |              |                             | +           |
| HEPA filtration, an unaba | bated EDE cannot be determined (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | discussion on page                                                  | 38.)                    |                    |                   |                      |                  |                        |                |                                       |             |               |               |            |              |                             |             |
| 1A/1B. FHE2A/2B.          | Preparation of plutonium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gross alpha                                                         | *                       | NA                 | 10.7              | 2.75                 | 4.0              | Double HEPA            | 0.0001         | 0.0E+00                               | **          | **            | 0.0E+00       | **         | **           | **                          | 3           |
| FGBE-1A/1B                | samples for diamond anvil studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gross alpria Gross beta                                             | *                       | NA<br>NA           | 10.7              | 2.75                 | 4.0              | Double HEPA            | 0.0001         | 0.0E+00                               |             | + +           | 0.00+00       |            |              |                             | + 3         |
| I GDL-IA/ID               | samples for diamond arivir studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GIOSS DEIA                                                          |                         | INA                |                   |                      |                  |                        |                | 0.02+00                               |             |               |               |            |              |                             | +           |
| HDCH-6.7                  | Metallographic sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U-234                                                               | 1.1E-08                 | 1.0E-06            | 10.7              | 2.75                 | 4.0              | HEPA                   | 0.01           | 1.1E-16                               | 1065        | ENE           | 9.2E-14       | 556        | SW           | 9.6E-12                     | 2           |
| 1A/1B, FHE2A/2B,          | preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U-235                                                               | 1.5E-09                 | 1.0E-06            | 10.7              | 2.75                 | 7.0              | 11617                  | 0.01           | 1.5E-17                               |             | VL            | V.EE-17       | - 550      | - C**        | 0.0L-12                     | +           |
| FGBE-1A/1B)               | propulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U-238                                                               | 1.2E-07                 | 1.0E-06            |                   |                      |                  |                        |                | 1.2E-15                               |             |               |               |            |              |                             | +           |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     | 1 0.                    |                    |                   |                      |                  |                        | 1              |                                       |             | + +           |               |            |              |                             | +           |
| 1A/1B, FHE2A/2B,          | Microstructure examination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U-234                                                               | 2.8E-09                 | 1.0E-06            | 10.7              | 2.75                 | 4.0              | None                   | 1              | 2.8E-15                               | 1065        | ENE           | 2.3E-12       | 556        | SW           | 2.4E-12                     | 2           |
| FGBE-1A/1B                | Salarina Salar | U-235                                                               | 3.8E-10                 | 1.0E-06            |                   |                      |                  |                        | <u> </u>       | 3.8E-16                               | . 300       |               |               |            |              |                             | <del></del> |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-238                                                               | 3.0E-08                 | 1.0E-06            |                   |                      |                  |                        |                | 3.0E-14                               |             |               |               |            |              |                             | <b>T</b>    |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |                         |                    |                   |                      |                  |                        |                |                                       |             |               |               |            |              |                             | <b>T</b>    |
| 1A/1B, FHE2A/2B,          | X-ray diffraction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U-234                                                               | 1.1E-09                 | 1.0E-06            | 10.7              | 2.75                 | 14.3             | None                   | 1              | 1.1E-15                               | 1065        | ENE           | 1.5E-13       | 556        | SW           | 1.6E-13                     | 2           |
| FGBE-1A/1B                | uranium oxide ceramics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U-235                                                               | 4.6E-11                 | 1.0E-06            |                   |                      |                  |                        |                | 4.6E-17                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-238                                                               | 9.9E-10                 | 1.0E-06            |                   |                      |                  |                        |                | 9.9E-16                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |                         |                    |                   |                      |                  |                        |                |                                       |             |               |               |            |              |                             |             |
| mistry and Material Scie  | iences Directorate for material propert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ies research and tes                                                | sting, and for study of | soil bacteria.     |                   |                      |                  |                        |                |                                       |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |                         |                    |                   |                      |                  |                        |                |                                       |             |               |               |            |              |                             |             |
| Room Air                  | Paritcle size analysis of powders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U-238                                                               | 2.0E-11                 | 1.0E-03            | NA                | NA                   | NA               | None                   | 1              | 2.0E-14                               | 1140        | E             | 2.9E-12       | 697        | W            | 2.2E-11                     | 2           |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-235                                                               | 9.3E-13                 | 1.0E-03            |                   |                      |                  |                        |                | 9.3E-16                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-234                                                               | 2.1E-11                 | 1.0E-03            |                   |                      |                  |                        |                | 2.1E-14                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |                         |                    |                   |                      |                  |                        |                |                                       |             |               |               |            |              |                             |             |
| FHE-55                    | Research and development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U-238                                                               | 1.4E-05                 | 1.0E+00            | 7.9               | 0.28                 | 15.4             | HEPA                   | 0.01           | 1.4E-07                               | 1140        | E             | 1.8E-05       | 821        | SW           | 4.4E-03                     | 2           |
|                           | of methods for radionuclide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U-235                                                               | 6.7E-07                 | 1.0E+00            |                   |                      |                  |                        |                | 6.7E-09                               |             |               |               |            |              |                             |             |
|                           | immobilization using uranium oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U-234                                                               | 1.5E-05                 | 1.0E+00            |                   |                      |                  |                        |                | 1.5E-07                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-238                                                               | 9.4E-07                 | 1.0E-03            |                   |                      |                  |                        |                | 9.4E-12                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-235                                                               | 4.4E-08                 | 1.0E-03            |                   |                      |                  |                        |                | 4.4E-13                               |             |               |               |            |              |                             | +           |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-234                                                               | 1.0E-06                 | 1.0E-03            |                   |                      |                  |                        |                | 1.0E-11                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-238                                                               | 1.9E-07                 | 1.0E-06            |                   |                      |                  |                        |                | 1.9E-15                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-235                                                               | 8.8E-09                 | 1.0E-06            |                   |                      |                  |                        |                | 8.8E-17                               |             |               |               |            |              |                             | +           |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-234                                                               | 2.0E-07                 | 1.0E-06            |                   | -                    |                  |                        | +              | 2.0E-15                               |             | + +           |               |            |              |                             | +           |
| FGBE-10                   | Pressing and sintering of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U-238                                                               | 8.9E-07                 | 1.0E+00            | 7.6               | 0.15                 | 12.9             | HEPA                   | 0.01           | 8.9E-09                               | 1140        | F             | 1.2E-06       | 697        | w            | 5.9E-04                     | 2           |
| 1 UDL-10                  | uranium oxide disks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U-238<br>U-235                                                      | 8.9E-07<br>4.2E-08      | 1.0E+00<br>1.0E+00 | 7.0               | 0.13                 | 14.8             | ПЕГА                   | 0.01           | 8.9E-09<br>4.2E-10                    | 1140        | -             | 1.25-00       | 097        | VV           | J.8E-U4                     | +           |
|                           | uramum oxide disks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U-235                                                               | 9.6E-01                 | 1.0E+00<br>1.0E+00 |                   | +                    |                  |                        | +              | 9.6E-03                               |             |               |               |            |              |                             | +           |
|                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U-238                                                               | 2.0E-10                 | 1.0E-03            |                   |                      |                  |                        | +              | 2.0E-15                               |             |               |               |            |              |                             | +           |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-235                                                               | 9.5E-12                 | 1.0E-03            |                   |                      |                  |                        | + +            | 9.5E-17                               |             |               |               |            |              |                             | +           |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-234                                                               | 2.2E-10                 | 1.0E-03            |                   |                      |                  |                        | 1              | 2.2E-15                               |             | + +           |               |            |              |                             | +           |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-238                                                               | 9.9E-15                 | 1.0E-06            |                   |                      |                  |                        |                | 9.9E-23                               |             | 1             |               |            |              |                             | $\top$      |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-235                                                               | 4.6E-16                 | 1.0E-06            |                   |                      |                  |                        |                | 4.6E-24                               |             | 1             |               |            |              |                             | $\top$      |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-234                                                               | 1.1E-14                 | 1.0E-06            |                   |                      |                  |                        |                | 1.1E-22                               |             |               |               |            |              |                             | T           |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |                         |                    |                   |                      |                  |                        |                |                                       |             |               |               |            |              |                             |             |
| FHE-7                     | Weighing and measuring of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U-238                                                               | 4.6E-07                 | 1.0E+00            | 7.9               | 0.39                 | 6.6              | None                   | 0.01           | 4.6E-09                               | 1140        | E             | 6.4E-07       | 697        | W            | 2.5E-04                     | 2           |
|                           | sintered uranium oxide disks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U-235                                                               | 2.2E-08                 | 1.0E+00            |                   |                      |                  |                        |                | 2.2E-10                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-234                                                               | 5.0E-07                 | 1.0E+00            |                   |                      |                  |                        |                | 5.0E-09                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-238                                                               | 9.9E-09                 | 1.0E-03            |                   |                      |                  |                        |                | 9.9E-14                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-235                                                               | 4.6E-10                 | 1.0E-03            |                   |                      |                  |                        |                | 4.6E-15                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-234                                                               | 1.1E-08                 | 1.0E-03            |                   |                      |                  |                        |                | 1.1E-13                               |             |               |               |            |              |                             |             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |                         |                    |                   |                      |                  |                        |                |                                       |             |               |               |            |              |                             |             |
| FHE-53                    | Study of bacterial conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C-14                                                                | 2.0E-07                 | 1.0E+00            | 7.9               | 0.30                 | 11.3             | None                   | 1              | 2.0E-07                               | 1140        | E             | 4.2E-09       | 697        | W            | 1.3E-08                     | 2           |
|                           | of organic carbon in waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C-14                                                                | 4.3E-10                 | 1.0E-03            |                   |                      |                  |                        |                | 4.3E-13                               |             |               |               | 754        | WNW          | 1.3E-08                     |             |
|                           | to carbon dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     |                         |                    |                   |                      |                  |                        |                |                                       |             |               |               |            |              |                             |             |
|                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     | <u> </u>                |                    |                   |                      |                  |                        | 1              |                                       |             |               |               |            |              |                             |             |
| Room Air                  | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P-32                                                                | 6.3E-08                 | 1.0E-03            | NA                | NA NA                | NA               | None                   | 1              | 6.3E-11                               | 1140        | E             | 1.5E-12       | 754        | WNW          | 1.0E-11                     | 2           |
|                           | nucleic acids from soil bacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                         |                    |                   |                      |                  |                        |                |                                       |             | 1             |               |            |              |                             |             |
| R                         | oom Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oom Air Hybridization studies with nucleic acids from soil bacteria | ,                       | ,                  | ,                 | ·                    | ,                |                        |                | · · · · · · · · · · · · · · · · · · · |             |               |               |            |              |                             |             |

| Building   | Room/Area            | Stack ID                              | Operation                                                                    | Radionuclides             | Annual Inventory       | Physical           | Stack              | Stack               | Stack       | Control               | Control Device   | Estimated          | 10 mrem/y   | Site-Wide Do | se Requirement | 0.1 mrem/                                        | y Monitoring | Requirement                                      | Source   |
|------------|----------------------|---------------------------------------|------------------------------------------------------------------------------|---------------------------|------------------------|--------------------|--------------------|---------------------|-------------|-----------------------|------------------|--------------------|-------------|--------------|----------------|--------------------------------------------------|--------------|--------------------------------------------------|----------|
|            |                      |                                       | ·                                                                            |                           | with Potential for     | State              | Height (m)         | Diameter            | Velocity    | Device(s)             | Abatement        | Annual Emissions   | Distance to |              | EDE            | Distance                                         | Direction    | Unabated                                         | Category |
|            |                      |                                       |                                                                              |                           | Release (Ci)           | Factor             |                    | (m)                 | (m/s)       |                       | Factor           | (Ci)               | SWMEI (m)   | to SWMEI     | (mrem)         | to MEI (m)                                       | to MEI       | EDE (mrem)                                       |          |
|            |                      |                                       | Safety, Security and Environmental Pro                                       |                           |                        |                    |                    |                     |             | are stored until they | can be disposed. |                    |             |              |                |                                                  |              |                                                  |          |
|            |                      |                                       | from earthquakes. Room exhausts from                                         |                           | a are double HEPA filt | tered; glove b     | ox exhausts are t  | triple HEPA filtere | ed.         |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            |                      |                                       | ontinuously sampled by simple filter sy<br>A/DOE Memorandum of Understanding |                           |                        |                    |                    | 1-1                 |             |                       |                  |                    |             |              |                | -                                                |              |                                                  |          |
|            |                      |                                       | bated EDE cannot be determined (see                                          |                           |                        | entory approa      | ach, are used to t | letermine annuar    | emissions.  |                       |                  |                    |             |              |                |                                                  |              | -                                                |          |
| Decause    | monitoring takes pla | ace alter FIET A Illitation, all tina | Carmot be determined (see                                                    | discussion on page        | 30.)                   |                    |                    |                     |             |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | Unhardened Area*     |                                       |                                                                              |                           |                        |                    |                    |                     |             |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
| 251        | 1234                 | CD-01                                 | Out of service                                                               | Gross alpha               | *                      | NA                 | 6.8                | 0.35                | 5.8         | HEPA                  | 0.01             | 7.0E-09            | 1185        | E            | 1.4E-06        | **                                               | **           | **                                               | 3        |
|            |                      |                                       |                                                                              | Gross beta                |                        |                    |                    |                     |             |                       |                  | 9.9E-08            |             |              |                |                                                  |              |                                                  |          |
|            |                      |                                       |                                                                              |                           |                        |                    |                    |                     |             |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
| 251        | 1003                 | FHE-5                                 | General chemistry                                                            | Gross alpha               | *                      | NA                 | 4.3                | 0.26                | 8.6         | HEPA                  | 0.01             | 0.0E+00            | 1188        | E            | 0.0E+00        | **                                               | **           | **                                               | 3        |
|            | 1003                 | FHE-4                                 |                                                                              | Gross beta                |                        |                    | 4.3                | 0.27                | 4.2         |                       |                  | 0.0E+00            |             |              |                |                                                  |              |                                                  |          |
|            | 1117<br>1117         | FGBE-21,22<br>FGBE-25,26              |                                                                              |                           |                        |                    | 5.5<br>8.5         | 0.11                | 7.6<br>12.8 |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | 1117                 | FGBE-23,24                            |                                                                              |                           |                        |                    | 5.5                | 0.10                | 7.6         |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | 1142                 | FHE-8                                 |                                                                              |                           |                        |                    | 4.3                | 0.32                | 4.1         |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | 1142                 | FHE-9                                 |                                                                              |                           |                        |                    | 4.3                | 0.26                | 5.1         |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | 1142                 | FHE-10                                |                                                                              |                           |                        |                    | 4.3                | 0.28                | 13.7        |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | 1150                 | FGBE-33,34                            |                                                                              |                           |                        |                    | 8.0                | 0.15                | 12.8        |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | 1150                 | FFE-15                                |                                                                              |                           |                        |                    | 4.3                | 0.31                | 7.6         |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | 1165                 | FGBE-31,32                            |                                                                              |                           |                        |                    | 5.5                | 0.87                | 0.1         |                       |                  |                    |             |              |                | -                                                |              |                                                  | -        |
|            | 1211                 | FHE-6                                 |                                                                              |                           |                        |                    | 6.4                | 0.25                | 8.0         |                       |                  |                    |             |              |                | -                                                |              |                                                  | -        |
|            | 1211<br>1212         | FHE-7<br>FGBE-15,16                   |                                                                              |                           |                        | -                  | 6.4<br>5.5         | 0.25                | 4.3<br>8.0  |                       |                  |                    |             |              |                | -                                                |              | -                                                | +        |
|            | 1212                 | FGBE-15,16<br>FGBE-27,28              |                                                                              | <del> </del>              |                        | <u> </u>           | 10.5               | 0.10                | 3.3         |                       |                  |                    |             |              |                | +                                                |              | +                                                |          |
|            | 1232                 | FGBE-38,39                            |                                                                              |                           |                        |                    | 7.2                | 0.15                | 5.1         |                       |                  |                    |             |              |                |                                                  |              |                                                  | +        |
|            | 1234                 | FFE-9                                 |                                                                              |                           |                        |                    | 4.3                | 0.19                | 14.7        |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | 1235                 | FFE-12                                |                                                                              |                           |                        |                    | 4.3                | 0.25                | 7.6         |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | 1235                 | FGBE-29,30                            |                                                                              |                           |                        |                    | 5.5                | 0.13                | 7.1         |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | 1301A                | FHE-16                                |                                                                              |                           |                        |                    | 6.4                | 0.31                | 5.4         |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | 1363                 | FGBE-35,36                            |                                                                              |                           |                        |                    | 4.3                | 0.13                | 11.2        |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | 1363<br>1363         | FHE-12<br>FHE-13                      |                                                                              |                           |                        |                    | 4.3<br>6.4         | 0.32                | 9.1         |                       |                  |                    |             |              |                | -                                                |              | -                                                |          |
|            | 1364                 | FFE-23                                |                                                                              |                           |                        | +                  | 4.3                | 0.28                | 6.8<br>9.1  |                       |                  |                    |             |              |                |                                                  |              | -                                                |          |
|            | 1314, 1354           | FGBE-44,45                            |                                                                              |                           |                        |                    | 10.2               | 0.15                | 10.2        |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | Hot cells            | FGBE-40,41                            |                                                                              |                           |                        |                    | 5.5                | 0.23                | 5.6         |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            | Hot cells            | FGBE-42,43                            |                                                                              |                           |                        |                    | 5.5                | 0.36                | 12.7        |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            |                      | FFE-13                                |                                                                              |                           |                        |                    | 5.5                | 0.28                | 4.1         |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            |                      |                                       |                                                                              |                           |                        |                    |                    |                     |             |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
| 054        | Hardened Area        | 50D5 1000                             | <u> </u>                                                                     | 0 11                      | *                      |                    | 7.0                |                     | 4.0         | T:   UEDA             | 0.000001         | 0.05.00            | 1100        | _            | 2.05.00        | **                                               | **           | **                                               |          |
| 251        | Glove Boxes*         | FGBE-1000<br>FGBE-2000                | Previous transuranic research                                                | Gross alpha<br>Gross beta | *                      | NA                 | 7.8                | 0.30                | 4.8         | Triple HEPA           | 0.000001         | 0.0E+00<br>0.0E+00 | 1188        | E            | 0.0E+00        | **                                               | **           |                                                  | 3        |
|            | Room Exhaust*        | FFE-1000                              |                                                                              | Gross alpha               | *                      | NA                 | 7.8                | 0.50                | 11.7        | Double HEPA           | 0.0001           | 0.0E+00            | 1188        | E            | 0.0E+00        | **                                               | **           | **                                               | 3        |
|            | Tiodiii Exiladot     | FFE-2000                              |                                                                              | Gross beta                |                        | 101                | 7.8                | 0.50                | 11.7        | Doddie HEI //         | 0.0001           | 0.0E+00            | 1100        |              | 0.02100        |                                                  |              |                                                  |          |
|            |                      |                                       |                                                                              |                           |                        |                    |                    |                     |             |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
| Building 2 | 53 houses the Hazar  | rds Control Department, and the       | facility includes laboratories for the cl                                    | hemical analysis and      | counting of radioacti  | ve samples.        |                    |                     |             |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
|            |                      |                                       |                                                                              |                           |                        |                    |                    |                     |             |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
| 253        | 1708                 | Room Air                              | Gross alpha/beta analysis of                                                 | Pu-238                    | 2.1E-10                | 1.0E-06            | NA                 | NA                  | NA          | None                  | 1                | 2.1E-16            | 1122        | ESE          | 9.9E-12        | 736                                              | W            | 1.4E-10                                          | 2        |
|            |                      |                                       | planchetted, dry samples,                                                    | Pu-239                    | 5.1E-09                | 1.0E-06            |                    |                     |             |                       |                  | 5.1E-15            |             |              |                | -                                                |              | -                                                | +        |
|            |                      |                                       | air filters and swipes                                                       | Pu-240<br>Pu-241          | 1.2E-09<br>5.2E-08     | 1.0E-06<br>1.0E-06 |                    |                     | 1           |                       |                  | 1.2E-15<br>5.2E-14 |             |              |                | +                                                |              | +                                                | +        |
|            |                      |                                       |                                                                              | Pu-242                    | 7.9E-14                | 1.0E-06            |                    |                     |             |                       |                  | 7.9E-20            |             |              |                |                                                  |              |                                                  |          |
|            |                      |                                       |                                                                              | Am-241                    | 2.5E-10                | 1.0E-06            |                    |                     |             |                       |                  | 2.5E-16            |             |              |                |                                                  |              |                                                  |          |
|            |                      |                                       |                                                                              | U-238                     | 2.8E-08                | 1.0E-06            |                    |                     |             |                       |                  | 2.8E-14            |             |              |                |                                                  |              |                                                  |          |
| -          |                      |                                       |                                                                              | U-235                     | 1.3E-09                | 1.0E-06            |                    |                     |             |                       |                  | 1.3E-15            |             |              |                |                                                  |              |                                                  |          |
|            |                      |                                       |                                                                              | U-234                     | 3.0E-08                | 1.0E-06            |                    |                     |             |                       |                  | 3.0E-14            |             |              |                | -                                                |              |                                                  |          |
| 0.50       | 17004                | Deer Air                              | Cross slabs/b-t                                                              | Du 000                    | 0.15.40                | 1.05.00            | N1A                | , hin               | b10         | Ne                    |                  | 0.15.10            | 1100        | F~-          | 0.05.10        | 700                                              | 347          | 1 45 10                                          | 1        |
| 253        | 1708A                | Room Air                              | Gross alpha/beta analysis of planchetted, dry samples,                       | Pu-238<br>Pu-239          | 2.1E-10<br>5.1E-09     | 1.0E-06<br>1.0E-06 | NA                 | NA                  | NA          | None                  | 1                | 2.1E-16<br>5.1E-15 | 1122        | ESE          | 9.9E-12        | 736                                              | W            | 1.4E-10                                          | 2        |
|            |                      |                                       | air filters and swipes                                                       | Pu-239<br>Pu-240          | 1.2E-09                | 1.0E-06            |                    |                     |             |                       |                  | 1.2E-15            |             |              |                | <del>                                     </del> |              | <del>                                     </del> | +        |
|            |                      |                                       | atoro and swipes                                                             | Pu-241                    | 5.2E-08                | 1.0E-06            |                    |                     |             |                       |                  | 5.2E-14            |             |              |                |                                                  |              |                                                  | 1        |
|            |                      |                                       |                                                                              | Pu-242                    | 7.9E-14                | 1.0E-06            |                    |                     |             |                       |                  | 7.9E-20            |             |              |                |                                                  |              |                                                  |          |
|            |                      |                                       |                                                                              | Am-241                    | 2.5E-10                | 1.0E-06            |                    |                     |             |                       |                  | 2.5E-16            |             |              |                |                                                  |              |                                                  |          |
|            |                      |                                       |                                                                              | U-238                     | 2.8E-08                | 1.0E-06            |                    |                     |             |                       |                  | 2.8E-14            |             |              |                |                                                  |              |                                                  |          |
|            |                      |                                       |                                                                              | U-235                     | 1.3E-09                | 1.0E-06            |                    |                     |             |                       |                  | 1.3E-15            |             |              |                |                                                  |              |                                                  |          |
|            |                      |                                       |                                                                              | U-234                     | 3.0E-08                | 1.0E-06            |                    |                     |             |                       |                  | 3.0E-14            |             |              |                | -                                                |              | -                                                | +        |
| 253        | 1708B                | Room Air                              | Gross alpha/beta analysis of                                                 | Pu-238                    | 2.1E-10                | 1.0E-06            | NA                 | NA                  | NA          | None                  | 1                | 2.1E-16            | 1122        | ESE          | 9.9E-12        | 736                                              | W            | 1.4E-10                                          | 2        |
|            |                      | HOUIII AII                            | planchetted, dry samples,                                                    | Pu-236<br>Pu-239          | 5.1E-09                | 1.0E-06            | INA                | INA                 | INA         | INUITE                | '                | 5.1E-16            | 1122        | Lion         | 9.95-12        | 730                                              | VV           | 1.46-10                                          |          |
| 253        | 17002                |                                       |                                                                              |                           |                        |                    | 1                  | 1                   | +           |                       | 1                | 1.2E-15            |             |              |                |                                                  |              |                                                  |          |
| 253        | 17005                |                                       | air filters and swipes                                                       | Pu-240                    | 1.2E-09                | 1.0E-06            |                    |                     |             |                       |                  |                    |             |              |                |                                                  |              |                                                  |          |
| 253        | 17005                |                                       | air filters and swipes                                                       | Pu-240<br>Pu-241          | 1.2E-09<br>5.2E-08     | 1.0E-06<br>1.0E-06 |                    |                     |             |                       |                  | 5.2E-14            |             |              |                |                                                  |              |                                                  |          |
| 253        | 17005                |                                       | air filters and swipes                                                       | Pu-241<br>Pu-242          | 5.2E-08<br>7.9E-14     | 1.0E-06<br>1.0E-06 |                    |                     |             |                       |                  | 5.2E-14<br>7.9E-20 |             |              |                |                                                  |              |                                                  |          |
| 253        | 17005                |                                       | air filters and swipes                                                       | Pu-241                    | 5.2E-08                | 1.0E-06            |                    |                     |             |                       |                  | 5.2E-14            |             |              |                |                                                  |              |                                                  |          |

| Building   | Room/Area            | Stack ID                       | Operation                                | Radionuclides                                                                                                                                                                                         | Annual Inventory                                                                                                                                                                                                                                          | Physical                                                                                                                                                                                                                                                  | Stack      | Stack    | Stack    | Control      | Control Device | Estimated                                                                                                                                                                                                 | 10 mrem/y S | ite-Wide Dos | se Requirement     | 0.1 mrem/   | y Monitoring | Requirement        | Source   |
|------------|----------------------|--------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|----------|--------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------------|-------------|--------------|--------------------|----------|
|            |                      |                                |                                          |                                                                                                                                                                                                       | with Potential for                                                                                                                                                                                                                                        | State                                                                                                                                                                                                                                                     | Height (m) | Diameter | Velocity | Device(s)    | Abatement      | Annual Emissions                                                                                                                                                                                          | Distance to | Direction    | EDE                | Distance    | Direction    | Unabated           | Category |
|            |                      |                                |                                          |                                                                                                                                                                                                       | Release (Ci)                                                                                                                                                                                                                                              | Factor                                                                                                                                                                                                                                                    |            | (m)      | (m/s)    |              | Factor         | (Ci)                                                                                                                                                                                                      | SWMEI (m)   | to SWMEI     | (mrem)             | to MEI (m)  | to MEI       | EDE (mrem)         |          |
| 253        | 1708B                | (continued)                    |                                          | U-235                                                                                                                                                                                                 | 1.3E-09                                                                                                                                                                                                                                                   | 1.0E-06                                                                                                                                                                                                                                                   |            |          |          |              |                | 1.3E-15                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
|            |                      |                                |                                          | U-234                                                                                                                                                                                                 | 3.0E-08                                                                                                                                                                                                                                                   | 1.0E-06                                                                                                                                                                                                                                                   |            |          |          |              |                | 3.0E-14                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
| 050        | 1700                 | EUE 04                         | Floreign was a slabe //s at a slage bate | D., 000                                                                                                                                                                                               | 1.05.10                                                                                                                                                                                                                                                   | 1.05.00                                                                                                                                                                                                                                                   | 0.4        | 0.00     | 10.0     | Ness         | 4              | 1.05.10                                                                                                                                                                                                   | 1100        | F0F          | 0.45.44            | 700         | 14/          | 4.45.40            |          |
| 253        | 1732                 | FHE-21                         | Flaming gross alpha/beta planchets       | Pu-239<br>Gross alpha                                                                                                                                                                                 | 1.3E-13<br>1.2E-13                                                                                                                                                                                                                                        | 1.0E+00<br>1.0E+00                                                                                                                                                                                                                                        | 6.4        | 0.30     | 13.2     | None         | 1              | 1.3E-13<br>1.2E-13                                                                                                                                                                                        | 1122        | ESE          | 2.1E-11            | 736<br>798  | WNW          | 1.4E-10<br>1.4E-10 | 2        |
|            | <del></del>          |                                |                                          | Gross beta                                                                                                                                                                                            | 2.3E-13                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   |            |          |          |              |                | 2.3E-13                                                                                                                                                                                                   |             |              |                    | 790         | VVINVV       | 1.46-10            |          |
|            |                      |                                |                                          | H-3                                                                                                                                                                                                   | 1.1E-12                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   |            |          |          |              |                | 1.1E-12                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
|            |                      |                                |                                          |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |            |          |          |              |                |                                                                                                                                                                                                           |             |              |                    |             |              |                    |          |
| 253        | 1734                 | Room Air                       | Distillation of environmental            | H-3                                                                                                                                                                                                   | 6.7E-10                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   | NA         | NA       | NA       | None         | 1              | 6.7E-10                                                                                                                                                                                                   | 1122        | ESE          | 5.6E-12            | 736         | W            | 7.8E-11            | 2        |
|            |                      |                                | samples                                  | Gross alpha                                                                                                                                                                                           | 5.4E-14                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   |            |          |          |              |                | 5.4E-14                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
|            |                      |                                |                                          | Gross beta                                                                                                                                                                                            | 4.1E-13                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   |            |          |          |              |                | 4.1E-13                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
|            | <del></del>          |                                |                                          |                                                                                                                                                                                                       | . ==                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                           |            |          |          |              |                | . ==                                                                                                                                                                                                      |             |              |                    |             |              |                    |          |
| 253        | 1734                 | FGBE-1,2                       | Sieve soil samples                       | Gross alpha                                                                                                                                                                                           | 2.7E-10<br>4.6E-10                                                                                                                                                                                                                                        | 1.0E-06<br>1.0E-06                                                                                                                                                                                                                                        | 6.1        | 0.10     | 23.6     | HEPA         | 0.01           | 2.7E-18<br>4.6E-18                                                                                                                                                                                        | 1122        | ESE          | 2.5E-16            | 736         | W            | 2.4E-13            | 2        |
|            |                      |                                |                                          | Gross beta                                                                                                                                                                                            | 4.66-10                                                                                                                                                                                                                                                   | 1.00-00                                                                                                                                                                                                                                                   |            |          |          |              |                | 4.0⊑-16                                                                                                                                                                                                   |             | + +          |                    |             |              |                    |          |
| 253        | 1734                 | FHE-13                         | Samples and standards plating            | Gross alpha                                                                                                                                                                                           | 1.7E-11                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   | 10.4       | 0.30     | 12.3     | None         | 1              | 1.7E-11                                                                                                                                                                                                   | 1122        | ESE          | 9.2E-11            | 798         | WNW          | 4.6E-10            | 2        |
|            |                      | -                              | j                                        | Gross beta                                                                                                                                                                                            | 2.2E-12                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   |            |          | -        |              |                | 2.2E-12                                                                                                                                                                                                   |             |              | -                  |             |              |                    |          |
|            |                      |                                |                                          | H-3                                                                                                                                                                                                   | 1.2E-11                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   |            |          |          |              |                | 1.2E-11                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
|            |                      |                                |                                          | Sr-90/Y-90                                                                                                                                                                                            | 1.7E-12                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   |            |          |          |              |                | 1.7E-12                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
|            |                      |                                |                                          | Pu-239                                                                                                                                                                                                | 7.8E-13                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   |            |          |          |              |                | 7.8E-13                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
| 050        | 1704                 | FLIE OO                        | Quality control                          | D.: 000                                                                                                                                                                                               | 0.55.40                                                                                                                                                                                                                                                   | 1.05.00                                                                                                                                                                                                                                                   | 10.4       | 0.00     | 10.0     | None         |                | 0 55 45                                                                                                                                                                                                   | 1100        | FOF          | 1.05.10            | 700         | 14761147     | 0.05.40            |          |
| 253        | 1734                 | FHE-20                         | Quality control sample                   | Pu-239<br>Sr/Y-90                                                                                                                                                                                     | 2.5E-12<br>2.2E-12                                                                                                                                                                                                                                        | 1.0E-03<br>1.0E-03                                                                                                                                                                                                                                        | 10.4       | 0.30     | 12.3     | None         | 1              | 2.5E-15<br>2.2E-15                                                                                                                                                                                        | 1122        | ESE          | 1.8E-13            | 798         | WNW          | 9.2E-13            | 2        |
|            |                      |                                | aliquoting                               | 5r/ Y -90<br>H-3                                                                                                                                                                                      | 1.1E-10                                                                                                                                                                                                                                                   | 1.0E-03                                                                                                                                                                                                                                                   | 1          |          |          |              |                | 1.1E-13                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
|            |                      |                                |                                          | 11-0                                                                                                                                                                                                  | 1.12-10                                                                                                                                                                                                                                                   | 1.02-00                                                                                                                                                                                                                                                   |            |          |          |              |                | 1.12-10                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
| 253        | 1734                 | FHE-11                         | Acid digestion for                       | H-3                                                                                                                                                                                                   | 6.8E-09                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   | 10.4       | 0.30     | 12.3     | None         | 1              | 6.8E-09                                                                                                                                                                                                   | 1122        | ESE          | 2.8E-09            | 798         | WNW          | 1.4E-08            | 2        |
|            |                      |                                | sample analysis                          | Gross alpha                                                                                                                                                                                           | 3.4E-11                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   |            |          |          |              |                | 3.4E-11                                                                                                                                                                                                   |             |              |                    | 736         | W            | 1.4E-08            |          |
|            |                      |                                |                                          | Gross beta                                                                                                                                                                                            | 2.2E-10                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   |            |          |          |              |                | 2.2E-10                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
|            |                      |                                |                                          | Sr/Y-90                                                                                                                                                                                               | 2.8E-12                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   |            |          |          |              |                | 2.8E-12                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
|            | +                    |                                |                                          | Pu-239                                                                                                                                                                                                | 3.1E-12                                                                                                                                                                                                                                                   | 1.0E+00                                                                                                                                                                                                                                                   |            |          |          |              |                | 3.1E-12                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
| 252        | 1910                 | FHE-22                         | Propagations of calibration              | H-3                                                                                                                                                                                                   | 3.0E-11                                                                                                                                                                                                                                                   | 1.0E-03                                                                                                                                                                                                                                                   | 7.0        | 0.20     | 5.2      | None         | 1              | 3.0E-14                                                                                                                                                                                                   | 1122        | ESE          | 1.8E-15            | 736         | w            | 2.1E-14            | 2        |
| 253        | 1910                 | FПE-22                         | Preparations of calibration standards    | C-14                                                                                                                                                                                                  | 1.5E-11                                                                                                                                                                                                                                                   | 1.0E-03                                                                                                                                                                                                                                                   | 7.0        | 0.20     | 5.2      | None         | ı              | 1.5E-14                                                                                                                                                                                                   | 1122        | ESE          | 1.0E-15            | 736         | VV           | 2.16-14            |          |
|            |                      |                                | Staridards                               | P-32                                                                                                                                                                                                  | 1.5E-10                                                                                                                                                                                                                                                   | 1.0E-03                                                                                                                                                                                                                                                   |            |          |          |              |                | 1.5E-13                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
|            |                      |                                |                                          |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |            |          |          |              |                |                                                                                                                                                                                                           |             |              |                    |             |              |                    |          |
|            |                      |                                |                                          |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |            |          |          |              |                |                                                                                                                                                                                                           |             |              |                    |             |              |                    |          |
| Building 2 | 54 is run by Hazards | Control for the purpose of con | nducting bioassays and providing analyti | cal services.                                                                                                                                                                                         |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |            |          |          |              |                |                                                                                                                                                                                                           |             |              |                    |             |              |                    |          |
|            | <del></del>          |                                |                                          |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |            |          |          |              |                |                                                                                                                                                                                                           |             |              |                    |             |              |                    |          |
| 254        | 108                  | FHE-1000                       | Analysis of urine for                    | Am-243                                                                                                                                                                                                | 1.3E-17                                                                                                                                                                                                                                                   | 1.0E-03                                                                                                                                                                                                                                                   | 8.2        | 1.07     | 5.3      | None         | 1              | 1.3E-20<br>1.6E-19                                                                                                                                                                                        | 1038        | ESE          | 3.7E-17            | 1070        | NNE          | 1.4E-16            | 2        |
|            | <del></del>          |                                | radionuclides                            | Pu-242<br>Pu-239                                                                                                                                                                                      | 1.6E-16<br>2.6E-17                                                                                                                                                                                                                                        | 1.0E-03<br>1.0E-03                                                                                                                                                                                                                                        |            |          |          |              |                | 2.6E-20                                                                                                                                                                                                   |             | + +          |                    | 1055<br>849 | SW<br>WNW    | 1.4E-16<br>1.4E-16 |          |
|            |                      |                                |                                          | H-3                                                                                                                                                                                                   |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |            |          |          |              |                | 1.4E-17                                                                                                                                                                                                   |             |              |                    | 040         | VVIVV        | 1.46-10            |          |
|            |                      |                                |                                          |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |            |          |          |              |                |                                                                                                                                                                                                           |             |              |                    |             |              |                    |          |
|            |                      |                                |                                          | Sr-90                                                                                                                                                                                                 | 1.4E-14<br>3.1E-14                                                                                                                                                                                                                                        | 1.0E-03<br>1.0E-03                                                                                                                                                                                                                                        |            |          |          |              |                | 3.1E-17                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
|            |                      |                                |                                          |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |            |          |          |              |                | 3.1E-17<br>3.1E-17                                                                                                                                                                                        |             |              |                    |             |              |                    |          |
| 254        |                      |                                |                                          | Sr-90<br>Y-90                                                                                                                                                                                         | 3.1E-14<br>3.1E-14                                                                                                                                                                                                                                        | 1.0E-03<br>1.0E-03                                                                                                                                                                                                                                        |            |          |          |              |                | 3.1E-17                                                                                                                                                                                                   |             |              |                    |             |              |                    |          |
| 254        | 109                  | FHE-1000                       | Analysis of urine for                    | Sr-90                                                                                                                                                                                                 | 3.1E-14                                                                                                                                                                                                                                                   | 1.0E-03                                                                                                                                                                                                                                                   | 8.2        | 1.07     | 5.3      | None         | 1              |                                                                                                                                                                                                           | 1038        | ESE          | 1.5E-18            | 1070        | NNE          | 5.9E-18            | 2        |
| 254        | 109                  | FHE-1000                       | Analysis of urine for radionuclides      | Sr-90<br>Y-90                                                                                                                                                                                         | 3.1E-14<br>3.1E-14                                                                                                                                                                                                                                        | 1.0E-03<br>1.0E-03                                                                                                                                                                                                                                        | 8.2        | 1.07     | 5.3      | None         | 1              | 3.1E-17                                                                                                                                                                                                   | 1038        | ESE          | 1.5E-18            | 1070        | NNE          | 5.9E-18            | 2        |
|            |                      |                                | radionuclides                            | Sr-90<br>Y-90<br>Am-243                                                                                                                                                                               | 3.1E-14<br>3.1E-14<br>1.3E-17                                                                                                                                                                                                                             | 1.0E-03<br>1.0E-03                                                                                                                                                                                                                                        |            |          |          |              |                | 3.1E-17<br>1.3E-20                                                                                                                                                                                        |             |              |                    |             |              |                    |          |
| 254        | 109                  | FHE-1000<br>FHE-1000           | radionuclides  Analysis of urine for     | Sr-90<br>Y-90<br>Am-243                                                                                                                                                                               | 3.1E-14<br>3.1E-14<br>1.3E-17                                                                                                                                                                                                                             | 1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                             | 8.2        | 1.07     | 5.3      | None<br>None | 1              | 3.1E-17<br>1.3E-20<br>8.2E-22                                                                                                                                                                             | 1038        | ESE          | 1.5E-18<br>1.3E-11 | 1070        | NNE NNE      | 5.9E-18<br>5.0E-11 | 2        |
|            |                      |                                | radionuclides                            | Sr-90<br>Y-90<br>Am-243                                                                                                                                                                               | 3.1E-14<br>3.1E-14<br>1.3E-17                                                                                                                                                                                                                             | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                            |            |          |          |              |                | 3.1E-17<br>1.3E-20<br>8.2E-22<br>2.3E-20<br>8.7E-21                                                                                                                                                       |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90<br>Y-90<br>Am-243<br>Am-241<br>Am-243<br>Cm-244<br>Np-237                                                                                                                                       | 3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15                                                                                                                                                                                 | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                 |            |          |          |              |                | 3.1E-17<br>1.3E-20<br>8.2E-22<br>2.3E-20<br>8.7E-21<br>1.1E-18                                                                                                                                            |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90<br>Y-90<br>Am-243<br>Am-241<br>Am-243<br>Cm-244<br>Np-237<br>Th-230                                                                                                                             | 3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17                                                                                                                                                                      | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                      |            |          |          |              |                | 3.1E-17<br>1.3E-20<br>8.2E-22<br>2.3E-20<br>8.7E-21<br>1.1E-18<br>8.9E-20                                                                                                                                 |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90<br>Y-90<br>Am-243<br>Am-241<br>Am-243<br>Cm-244<br>Np-237<br>Th-230<br>Cf-252                                                                                                                   | 3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>8.0E-17                                                                                                                                                           | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                           |            |          |          |              |                | 3.1E-17<br>1.3E-20<br>8.2E-22<br>2.3E-20<br>8.7E-21<br>1.1E-18<br>8.9E-20<br>8.0E-20                                                                                                                      |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90<br>Y-90<br>Am-243<br>Am-241<br>Am-243<br>Cm-244<br>Np-237<br>Th-230<br>Cf-252<br>U-233                                                                                                          | 3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>8.0E-17<br>2.7E-19                                                                                                                                                | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                           |            |          |          |              |                | 3.1E-17<br>1.3E-20<br>8.2E-22<br>2.3E-20<br>8.7E-21<br>1.1E-18<br>8.9E-20<br>8.0E-20<br>2.7E-22                                                                                                           |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90<br>Y-90<br>Am-243<br>Am-241<br>Am-243<br>Cm-244<br>Np-237<br>Th-230<br>Cf-252<br>U-233<br>U-234                                                                                                 | 3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>8.0E-17<br>2.7E-19<br>2.6E-18                                                                                                                                     | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                |            |          |          |              |                | 3.1E-17<br>1.3E-20<br>8.2E-22<br>2.3E-20<br>8.7E-21<br>1.1E-18<br>8.9E-20<br>8.0E-20<br>2.7E-22<br>2.6E-21                                                                                                |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90<br>Y-90<br>Am-243<br>Am-241<br>Am-243<br>Cm-244<br>Np-237<br>Th-230<br>Cf-252<br>U-233<br>U-234<br>U-235                                                                                        | 3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>8.0E-17<br>2.7E-19<br>2.6E-18<br>2.7E-19                                                                                                                          | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                     |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 8.0E-20 2.7E-22 2.6E-21 2.7E-22                                                                                                                 |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90<br>Y-90<br>Am-243<br>Am-241<br>Am-243<br>Cm-244<br>Np-237<br>Th-230<br>Cf-252<br>U-233<br>U-234                                                                                                 | 3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>8.0E-17<br>2.7E-19<br>2.6E-18                                                                                                                                     | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                |            |          |          |              |                | 3.1E-17<br>1.3E-20<br>8.2E-22<br>2.3E-20<br>8.7E-21<br>1.1E-18<br>8.9E-20<br>8.0E-20<br>2.7E-22<br>2.6E-21                                                                                                |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90<br>Y-90<br>Am-243<br>Am-241<br>Am-243<br>Cm-244<br>Np-237<br>Th-230<br>Cf-252<br>U-233<br>U-234<br>U-235<br>U-236                                                                               | 3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>8.0E-17<br>2.7E-19<br>2.6E-18<br>2.7E-19<br>8.3E-17                                                                                                               | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                          |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 8.0E-20 2.7E-22 2.6E-21 2.7E-22 8.3E-20                                                                                                         |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90<br>Y-90<br>Am-243<br>Am-241<br>Am-243<br>Cm-244<br>Np-237<br>Th-230<br>Cf-252<br>U-233<br>U-234<br>U-235<br>U-236<br>U-238<br>Mixed gamma<br>Cf-249                                             | 3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>2.7E-19<br>2.6E-18<br>2.7E-19<br>8.3E-17<br>6.3E-21<br>4.5E-12<br>6.7E-13                                                                                         | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                               |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 2.7E-22 2.6E-21 2.7E-22 8.3E-20 6.3E-24 4.5E-15 6.7E-16                                                                                         |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90 Y-90  Am-243  Am-241  Am-243  Cm-244  Np-237  Th-230  Cf-252  U-233  U-234  U-235  U-236  U-238  Mixed gamma  Cf-249  U-232                                                                     | 3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>2.7E-19<br>2.6E-18<br>2.7E-19<br>8.3E-17<br>6.3E-21<br>4.5E-12<br>6.7E-13<br>6.4E-13                                                                              | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                    |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 8.0E-20 2.7E-22 2.6E-21 2.7E-22 8.3E-20 6.3E-24 4.5E-15 6.7E-16 6.4E-16                                                                         |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90 Y-90  Am-243  Am-241 Am-243 Cm-244 Np-237 Th-230 Cf-252 U-233 U-234 U-235 U-236 U-236 U-236 U-236 U-232 Po-209                                                                                  | 3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>8.0E-17<br>2.7E-19<br>2.6E-18<br>2.7E-19<br>8.3E-17<br>6.3E-21<br>4.5E-12<br>6.7E-13<br>6.4E-13<br>7.1E-14                                                        | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                              |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 8.0E-20 2.7E-22 2.6E-21 2.7E-22 8.3E-20 6.3E-24 4.5E-15 6.7E-16 6.4E-16 7.1E-17                                                                 |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90 Y-90  Am-243  Am-241  Am-243  Cm-244  Np-237  Th-230  Cf-252  U-233  U-234  U-235  U-236  U-238  Mixed gamma  Cf-249  U-232  Po-209  Pu-242                                                     | 3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>2.7E-19<br>2.6E-18<br>2.7E-19<br>8.3E-17<br>6.3E-21<br>4.5E-12<br>6.7E-13<br>6.4E-13<br>7.1E-14<br>1.4E-13                                                        | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                              |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 8.0E-20 2.7E-22 2.6E-21 2.7E-22 8.3E-20 6.3E-24 4.5E-15 6.7E-16 6.4E-16 7.1E-17 1.4E-16                                                         |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90 Y-90  Am-243  Am-241  Am-243  Cm-244  Np-237  Th-230  Cf-252  U-233  U-234  U-235  U-236  U-238  Mixed gamma  Cf-249  U-232  Po-209  Pu-242  Pu-239                                             | 3.1E-14<br>3.1E-14<br>3.1E-17<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>8.0E-17<br>2.7E-19<br>2.6E-18<br>2.7E-19<br>8.3E-17<br>6.3E-21<br>4.5E-12<br>6.7E-13<br>6.4E-13<br>7.1E-14<br>1.4E-13<br>2.2E-14                       | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                   |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 8.0E-20 2.7E-22 2.6E-21 2.7E-22 8.3E-20 6.3E-24 4.5E-15 6.7E-16 6.4E-16 7.1E-17 1.4E-16 2.2E-17                                                 |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90 Y-90  Am-243  Am-241  Am-243  Cm-244  Np-237  Th-230  Cf-252  U-233  U-234  U-235  U-236  U-238  Mixed gamma  Cf-249  U-232  Po-209  Pu-242  Pu-239  P-32                                       | 3.1E-14<br>3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>8.0E-17<br>2.7E-19<br>2.6E-18<br>2.7E-19<br>8.3E-17<br>6.3E-21<br>4.5E-12<br>6.7E-13<br>6.4E-13<br>7.1E-14<br>1.4E-13<br>2.2E-14<br>7.0E-12            | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                   |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 2.7E-22 2.6E-21 2.7E-22 8.3E-20 6.3E-24 4.5E-15 6.7E-16 6.4E-16 7.1E-17 1.4E-16 2.2E-17 7.0E-15                                                 |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90 Y-90  Am-243  Am-241  Am-243  Cm-244  Np-237  Th-230  Cf-252  U-233  U-234  U-235  U-236  U-238  Mixed gamma  Cf-249  U-232  Po-209  Pu-242  Pu-239                                             | 3.1E-14<br>3.1E-14<br>3.1E-17<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>8.0E-17<br>2.7E-19<br>2.6E-18<br>2.7E-19<br>8.3E-17<br>6.3E-21<br>4.5E-12<br>6.7E-13<br>6.4E-13<br>7.1E-14<br>1.4E-13<br>2.2E-14                       | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                   |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 8.0E-20 2.7E-22 2.6E-21 2.7E-22 8.3E-20 6.3E-24 4.5E-15 6.7E-16 6.4E-16 7.1E-17 1.4E-16 2.2E-17                                                 |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90 Y-90  Am-243  Am-241  Am-243  Cm-244  Np-237  Th-230  Cf-252  U-233  U-234  U-235  U-236  U-238  Mixed gamma  Cf-249  U-232  Po-209  Pu-242  Pu-239  P-32 S-35                                  | 3.1E-14<br>3.1E-14<br>3.1E-14<br>1.3E-17<br>8.2E-19<br>2.3E-17<br>8.7E-18<br>1.1E-15<br>8.9E-17<br>8.0E-17<br>2.7E-19<br>2.6E-18<br>2.7E-19<br>8.3E-17<br>6.3E-21<br>4.5E-12<br>6.7E-13<br>6.4E-13<br>7.1E-14<br>1.4E-13<br>2.2E-14<br>7.0E-12<br>3.2E-12 | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                             |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 2.7E-22 2.6E-21 2.7E-22 8.3E-20 6.3E-24 4.5E-15 6.7E-16 6.4E-16 7.1E-17 1.4E-16 2.2E-17 7.0E-15 3.2E-15                                         |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90 Y-90  Am-243  Am-241  Am-243  Cm-244  Np-237  Th-230  Cf-252  U-233  U-234  U-235  U-236  U-238  Mixed gamma  Cf-249  U-232  Po-209  Pu-242  Pu-239  P-32 S-35  C-14 P-33 I-125                 | 3.1E-14 3.1E-14 3.1E-14 3.1E-17  1.3E-17  8.2E-19 2.3E-17 8.7E-18 1.1E-15 8.9E-17 8.0E-17 2.7E-19 2.6E-18 2.7E-19 8.3E-17 6.3E-21 4.5E-12 6.7E-13 6.4E-13 7.1E-14 1.4E-13 2.2E-14 7.0E-12 3.2E-12 5.6E-12 1.1E-12 9.0E-13                                 | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                       |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 8.0E-20 2.7E-22 2.6E-21 2.7E-22 8.3E-20 6.3E-24 4.5E-15 6.7E-16 6.4E-16 7.1E-17 1.4E-16 2.2E-17 7.0E-15 3.2E-15 5.6E-15 1.1E-15 9.0E-16         |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90 Y-90  Am-243  Am-241  Am-243  Cm-244  Np-237  Th-230  Cf-252  U-233  U-234  U-235  U-236  U-238  Mixed gamma  Cf-249  U-232  Po-209  Pu-242  Pu-239  P-32  S-35  C-14  P-33  I-125  Sr-90       | 3.1E-14 3.1E-14 3.1E-14 3.1E-17  8.2E-19 2.3E-17 8.7E-18 1.1E-15 8.9E-17 8.0E-17 2.7E-19 2.6E-18 2.7E-19 8.3E-17 6.3E-21 4.5E-12 6.7E-13 6.4E-13 7.1E-14 1.4E-13 2.2E-14 7.0E-12 3.2E-12 5.6E-12 1.1E-12 9.0E-13 5.0E-14                                  | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03            |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 8.0E-20 2.7E-22 2.6E-21 2.7E-22 8.3E-20 6.3E-24 4.5E-15 6.7E-16 6.4E-16 7.1E-17 1.4E-16 2.2E-17 7.0E-15 3.2E-15 5.6E-15 1.1E-15 9.0E-16 5.0E-17 |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90 Y-90  Am-243  Am-241  Am-243  Cm-244  Np-237  Th-230  Cf-252  U-233  U-234  U-235  U-236  U-238  Mixed gamma  Cf-249  U-232  Po-209  Pu-242  Pu-239  P-32  S-35  C-14  P-33  I-125  Sr-90  Y-90 | 3.1E-14 3.1E-14 3.1E-14 3.1E-14 1.3E-17  8.2E-19 2.3E-17 8.7E-18 1.1E-15 8.9E-17 8.0E-17 2.7E-19 2.6E-18 2.7E-19 8.3E-17 6.3E-21 4.5E-12 6.7E-13 6.4E-13 7.1E-14 1.4E-13 2.2E-14 7.0E-12 3.2E-12 5.6E-12 1.1E-12 9.0E-13 5.0E-14                          | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03 |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 2.7E-22 2.6E-21 2.7E-22 8.3E-20 6.3E-24 4.5E-15 6.7E-16 6.4E-16 7.1E-17 1.4E-16 2.2E-17 7.0E-15 3.2E-15 5.6E-15 1.1E-15 9.0E-16 5.0E-17         |             |              |                    |             |              |                    |          |
|            |                      |                                | radionuclides  Analysis of urine for     | Sr-90 Y-90  Am-243  Am-241  Am-243  Cm-244  Np-237  Th-230  Cf-252  U-233  U-234  U-235  U-236  U-238  Mixed gamma  Cf-249  U-232  Po-209  Pu-242  Pu-239  P-32  S-35  C-14  P-33  I-125  Sr-90       | 3.1E-14 3.1E-14 3.1E-14 3.1E-17  8.2E-19 2.3E-17 8.7E-18 1.1E-15 8.9E-17 8.0E-17 2.7E-19 2.6E-18 2.7E-19 8.3E-17 6.3E-21 4.5E-12 6.7E-13 6.4E-13 7.1E-14 1.4E-13 2.2E-14 7.0E-12 3.2E-12 5.6E-12 1.1E-12 9.0E-13 5.0E-14                                  | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03            |            |          |          |              |                | 3.1E-17  1.3E-20  8.2E-22 2.3E-20 8.7E-21 1.1E-18 8.9E-20 8.0E-20 2.7E-22 2.6E-21 2.7E-22 8.3E-20 6.3E-24 4.5E-15 6.7E-16 6.4E-16 7.1E-17 1.4E-16 2.2E-17 7.0E-15 3.2E-15 5.6E-15 1.1E-15 9.0E-16 5.0E-17 |             |              |                    |             |              |                    |          |

| Building   | Room/Area                  | Stack ID                          | Operation                               | Radionuclides         | Annual Inventory        | Physical           | Stack      | Stack    | Stack    | Control                                                                                                       | Control Device | Estimated          |           |          | se Requirement | 0.1 mrem/  | y Monitoring | Requirement                                      | Source    |
|------------|----------------------------|-----------------------------------|-----------------------------------------|-----------------------|-------------------------|--------------------|------------|----------|----------|---------------------------------------------------------------------------------------------------------------|----------------|--------------------|-----------|----------|----------------|------------|--------------|--------------------------------------------------|-----------|
|            |                            |                                   |                                         |                       | with Potential for      | State              | Height (m) | Diameter | Velocity | Device(s)                                                                                                     | Abatement      | Annual Emissions   |           |          | EDE            | Distance   | Direction    | Unabated                                         | Category  |
|            |                            |                                   |                                         |                       | Release (Ci)            | Factor             |            | (m)      | (m/s)    |                                                                                                               | Factor         | (Ci)               | SWMEI (m) | to SWMEI | (mrem)         | to MEI (m) | to MEI       | EDE (mrem)                                       |           |
| 254        | 110                        | (continued)                       |                                         | Cm-242                | 9.1E-13                 | 1.0E-03            |            |          |          |                                                                                                               |                | 9.1E-16            |           |          |                |            |              |                                                  | <u> </u>  |
|            |                            |                                   |                                         | Th-230                | 9.4E-12                 | 1.0E-03            |            |          |          |                                                                                                               |                | 9.4E-15            |           |          |                |            | ļ'           |                                                  | <b></b> ' |
|            |                            |                                   |                                         | Cf-252                | 8.4E-12                 | 1.0E-03            |            |          |          |                                                                                                               |                | 8.4E-15            | +         | +        |                |            |              |                                                  | +         |
|            |                            |                                   |                                         | U-233                 | 2.2E-16                 | 1.0E-03            |            |          |          |                                                                                                               |                | 2.2E-19            |           |          |                |            |              | -                                                | -         |
|            |                            |                                   |                                         | U-234<br>U-235        | 8.2E-15<br>2.3E-16      | 1.0E-03<br>1.0E-03 |            |          |          |                                                                                                               |                | 8.2E-18<br>2.3E-19 | +         | +        |                | +          |              | <u> </u>                                         | +         |
|            |                            |                                   |                                         | U-235<br>U-236        | 5.8E-14                 | 1.0E-03<br>1.0E-03 |            |          |          |                                                                                                               |                | 5.8E-17            | +         | +        |                | +          |              |                                                  | +         |
|            |                            |                                   |                                         | U-236<br>U-238        | 2.0E-15                 | 1.0E-03<br>1.0E-03 |            |          |          |                                                                                                               |                | 2.0E-18            | +         | +        |                | +          | -            |                                                  | +         |
|            |                            |                                   |                                         | 0-236                 | 2.0E-15                 | 1.0E-03            |            |          |          |                                                                                                               |                | 2.UE-10            | +         | +        |                | +          |              |                                                  | +         |
| 254        | 113                        | FHE-1000                          | Analysis of urine for                   | Pu-242                | 1.6E-16                 | 1.0E-03            | 8.2        | 1.07     | 5.3      | None                                                                                                          | 1              | 1.6E-19            | 1038      | ESE      | 3.8E-17        | 1070       | NNE          | 1.4E-16                                          | 2         |
| 204        | 110                        | 1112-1000                         | radionuclides                           | Pu-239                | 2.6E-17                 | 1.0E-03            | 0.2        | 1.07     | 3.0      | TAOTIC                                                                                                        | '              | 2.6E-20            | 1000      | +        | 0.0E-17        | 1055       | SW           | 1.4E-16                                          |           |
|            |                            |                                   | radionaciaes                            | H-3                   | 1.4E-14                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.4E-17            | +         | + +      |                | 817        | W            | 1.4E-16                                          | 1         |
|            |                            |                                   |                                         | C-14                  | 1.4E-14                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.4E-17            | +         | +        |                | 849        | WNW          | 1.4E-16                                          | +         |
|            |                            |                                   |                                         | Sr-90                 | 3.1E-14                 | 1.0E-03            |            |          |          |                                                                                                               |                | 3.1E-17            | +         |          |                | +          |              |                                                  | +         |
|            |                            |                                   |                                         | Y-90                  | 3.1E-14                 | 1.0E-03            |            |          |          |                                                                                                               |                | 3.1E-17            |           |          |                |            |              |                                                  | 1         |
|            |                            |                                   |                                         | Am-243                | 1.3E-17                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.3E-20            |           |          | 1              |            |              |                                                  |           |
|            |                            |                                   |                                         |                       |                         |                    |            |          |          |                                                                                                               |                |                    | 1         |          |                |            |              |                                                  |           |
| Building 2 | 55 is operated by H        | lazards Control and houses a rad  | iation calibration and standards labora | ory. Many operation   | ns involve the use of s | ealed source       | S.         |          | 1        |                                                                                                               |                |                    | +         | +        |                | +          | -            |                                                  | +         |
| 255        | 165                        | FHE-4                             | Analysis of urine for                   | I-125                 | 2.3E-09                 | 1.0E-03            | 6.9        | 0.30     | 5.1      | None                                                                                                          | 1              | 2.3E-12            | 1056      | Е        | 6.1E-12        | 790        | W            | 1.8E-11                                          | 2         |
|            |                            |                                   | radionuclides                           | I-131                 | 7.2E-09                 | 1.0E-03            |            |          |          |                                                                                                               |                | 7.2E-12            |           |          |                |            |              |                                                  |           |
|            |                            |                                   |                                         | Th-230                | 5.7E-14                 | 1.0E-03            |            |          |          |                                                                                                               |                | 5.7E-17            |           |          |                |            |              |                                                  |           |
|            |                            |                                   |                                         | Th-232                | 1.0E-16                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.0E-19            |           |          | -              |            |              |                                                  |           |
|            |                            |                                   |                                         | U-233                 | 1.0E-11                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.0E-14            |           |          |                |            |              |                                                  |           |
|            |                            |                                   |                                         | U-238                 | 1.3E-15                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.3E-18            |           |          |                |            | ļ            | ļ                                                |           |
|            |                            |                                   |                                         | Np-237                | 5.7E-14                 | 1.0E-03            |            |          |          |                                                                                                               |                | 5.7E-17            |           |          |                |            | <u> </u>     |                                                  |           |
|            |                            |                                   |                                         | Cm-244                | 3.8E-14                 | 1.0E-03            |            |          |          |                                                                                                               |                | 3.8E-17            | +         |          |                |            |              |                                                  |           |
|            |                            |                                   |                                         | Am-241                | 3.8E-15                 | 1.0E-03            |            |          |          |                                                                                                               |                | 3.8E-18            | +         |          |                |            |              |                                                  | +         |
|            |                            |                                   |                                         | Am-243                | 1.9E-14                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.9E-17<br>1.9E-17 | +         | +        |                |            |              |                                                  | +         |
|            |                            |                                   |                                         | Pu-239<br>Pu-242      | 1.9E-14<br>1.9E-15      | 1.0E-03<br>1.0E-03 |            |          |          |                                                                                                               |                | 1.9E-17<br>1.9E-18 | +         | +        |                | +          |              | <u> </u>                                         | +         |
|            |                            |                                   | +                                       | Pu-242                | 1.9E-15                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.9E-16            | +         | +        |                |            |              |                                                  |           |
| 255        | 180                        | FHE-2                             | Tritium gas monitor calibrations        | H-3                   | 2.5E-02                 | 1.0E+00            | 8.1        | 0.31     | 5.2      | None                                                                                                          | 1              | 2.5E-02            | 1056      | E        | 9.9E-06        | 790        | W            | 3.9E-05                                          | 2         |
| Building 2 | <br>81 is part of the End  | ergy and Environment Directorate  | Tracer work, dissolution studies and    | l flow studies are co | nducted in this buildin | ıq.                |            |          |          |                                                                                                               |                |                    |           | +        |                |            |              |                                                  | +         |
| ·          |                            |                                   |                                         |                       |                         |                    |            |          |          |                                                                                                               |                |                    | <u> </u>  |          |                |            |              |                                                  |           |
| 281        | 1174                       | FHE-13                            | Tracer work                             | Ni-63                 | 1.0E-05                 | 1.0E-03            | 6.7        | 0.30     | 6.1      | None                                                                                                          | 1              | 1.0E-08            | 1332      | ESE      | 2.4E-11        | 579        | NNE          | 3.1E-10                                          | 2         |
| 281        | 1305                       | Room air                          | Dissolution studies                     | U-238                 | 4.3E-09                 | 1.0E-03            | NA         | NA       | NA       | None                                                                                                          | 1              | 4.3E-12            | 1332      | ESE      | 1.0E-10        | 753        | WNW          | 1.8E-09                                          | 2         |
| 281        | 1307                       | FHE-6                             | Tracer work                             | Np-237                | 2.5E-12                 | 1.0E-03            | 6.4        | 0.61     | 2.7      | None                                                                                                          | 1              | 2.5E-15            | 1332      | ESE      | 4.0E-08        | 753        | WNW          | 5.6E-07                                          | 2         |
| 201        | 1307                       | FRE-0                             | Tracer work                             | U-238                 | 4.10E-14                | 1.0E-03            | 0.4        | 0.61     | 2.7      | None                                                                                                          | '              | 4.1E-17            | 1332      |          | 4.00-00        | 155        | VVINVV       | 5.0E-07                                          | +         |
|            |                            |                                   |                                         | U-235                 | 5.28E-16                | 1.0E-03            |            |          |          |                                                                                                               |                | 5.3E-19            | +         | +        |                | +          |              |                                                  | +         |
|            |                            |                                   |                                         | U-234                 | 3.83E-15                | 1.0E-03            |            |          |          |                                                                                                               |                | 3.8E-18            | +         | +        |                | +          |              |                                                  | +         |
|            |                            |                                   |                                         | Pu-239                | 3.3E-07                 | 1.0E-03            |            |          |          |                                                                                                               |                | 3.3E-10            | +         | +        |                | +          |              |                                                  | +         |
|            |                            |                                   |                                         | Pu-242                | 2.1E-11                 | 1.0E-03            |            |          |          |                                                                                                               |                | 2.1E-14            |           | +        |                |            |              |                                                  | +         |
|            |                            |                                   |                                         | U-233                 | 2.3E-08                 | 1.0E-03            |            |          |          |                                                                                                               |                | 2.3E-11            | +         | + +      | ſ              |            |              |                                                  | +         |
|            |                            |                                   |                                         | Pu-244                | 1.6E-09                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.6E-12            | 1         | + +      |                | <b>T</b>   |              |                                                  | <b>T</b>  |
|            |                            |                                   |                                         | Ni-63                 | 2.0E-04                 | 1.0E-03            |            |          |          |                                                                                                               |                | 2.0E-07            |           |          | 1              |            |              |                                                  | 1         |
|            |                            |                                   |                                         | Ni-59                 | 7.0E-08                 | 1.0E-03            |            |          |          |                                                                                                               |                | 7.0E-11            |           |          |                |            |              |                                                  |           |
|            |                            |                                   |                                         | Tc-99                 | 1.0E-07                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.0E-10            | <u> </u>  |          |                |            |              |                                                  |           |
|            |                            |                                   |                                         | Sr-90                 | 1.0E-05                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.0E-08            |           |          |                |            |              |                                                  |           |
|            |                            |                                   |                                         | Ca-41                 | 1.0E-04                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.0E-07            |           |          |                |            |              |                                                  |           |
|            |                            |                                   |                                         | Be-10                 | 1.0E-05                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.0E-08            |           | $\perp$  |                |            |              |                                                  |           |
|            |                            |                                   | -                                       | Pu-239/U-233          | 1.0E-07                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.0E-10            |           |          |                |            | <u> </u>     |                                                  |           |
| 001        | 1011                       | FUE 10                            | Colution                                | 0.11                  | 1.05.04                 | 1.05.00            | 6.1        | 0.44     | 4.0      | N                                                                                                             |                | 1.05.07            | 1000      | +        | 4.05.00        | 750        | 1A/A BA/     | F FF 00                                          | +         |
| 281        | 1311                       | FHE-12                            | Solution preparation                    | C-14<br>CI-36         | 1.9E-04<br>1.0E-05      | 1.0E-03<br>1.0E-03 | 6.1        | 0.41     | 4.0      | None                                                                                                          | 1              | 1.9E-07<br>1.0E-08 | 1332      | ESE      | 4.0E-09        | 753        | WNW          | 5.5E-08                                          | 2         |
|            |                            |                                   | +                                       | H-3                   | 2.5E-05                 | 1.0E-03<br>1.0E-03 |            |          |          |                                                                                                               | +              | 2.5E-08            | +         | + +      |                | +          |              | <del>                                     </del> | +         |
|            |                            |                                   | +                                       | 11-0                  | £.UL-UU                 | 1.01-03            |            |          |          |                                                                                                               |                | 2.JL-00            | +         | +        |                | +          |              |                                                  | +         |
| 281        | 1323                       | FHE-1                             | Radioactivity migration studies         | Na-22                 | 8.0E-08                 | 1.0E-03            | 6.7        | 0.30     | 6.1      | None                                                                                                          | 1              | 8.0E-11            | 1332      | ESE      | 6.2E-09        | 579        | NNE          | 8.3E-08                                          | 2         |
|            |                            |                                   |                                         | U-238                 | 1.2E-07                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.2E-10            |           |          |                |            |              |                                                  |           |
|            |                            |                                   |                                         | U-235                 | 5.5E-09                 | 1.0E-03            |            |          |          |                                                                                                               |                | 5.5E-12            |           |          |                |            |              |                                                  |           |
|            |                            |                                   |                                         | U-234                 | 1.3E-07                 | 1.0E-03            |            |          |          |                                                                                                               |                | 1.3E-10            |           |          | <u> </u>       |            |              |                                                  |           |
|            |                            | h. the Dharies and Ocean Disset   | rate. Residual contamination exists in  | the facility from pas | t operations.           |                    |            |          |          |                                                                                                               |                |                    | +         | +        |                | +          | -            |                                                  | +         |
| Building 2 | 82 is administered b       | by the Physics and Shace Director |                                         |                       |                         |                    | 1          |          |          | i de la companya de | 1              | 1                  |           |          |                |            | 1            | 1                                                |           |
|            |                            |                                   |                                         | ,                     |                         |                    |            |          |          |                                                                                                               |                |                    |           |          |                |            |              |                                                  |           |
| Building 2 | 82 is administered to 1000 | Room Air                          | Contamination                           | H-3                   | 4.0E-06                 | 1.0E-03            | NA         | NA       | NA       | None                                                                                                          | 1              | 4.0E-09            | 1332      | ESE      | 6.2E-13        | 753        | WNW          | 1.1E-11                                          | 2         |

| Buildina    | Room/Area                             | Stack ID                              | Operation                                  | Radionuclides             | Annual Inventory       | Physical           | Stack              | Stack               | Stack            | Control                 | Control Device      | Estimated          | 10 mrom/y 9 | Sita-Wida Dos                                    | e Requirement      | 0.1 mrom/  | v Monitorina | Requirement | Source                                           |
|-------------|---------------------------------------|---------------------------------------|--------------------------------------------|---------------------------|------------------------|--------------------|--------------------|---------------------|------------------|-------------------------|---------------------|--------------------|-------------|--------------------------------------------------|--------------------|------------|--------------|-------------|--------------------------------------------------|
| Bulluling   | Hoolii/Alea                           | Stack ID                              | Operation                                  | nadionaciaes              | with Potential for     | State              | Height (m)         | Diameter            | Velocity         | Device(s)               | Abatement           | Annual Emissions   | Distance to |                                                  | <u>EDE</u>         | Distance   | Direction    | Unabated    | Category                                         |
|             |                                       |                                       |                                            |                           | Release (Ci)           | Factor             | 110.g.n. ()        | (m)                 | (m/s)            | 201100(0)               | Factor              | (Ci)               | SWMEI (m)   |                                                  | (mrem)             | to MEI (m) | to MEI       | EDE (mrem)  | - Cutogoty                                       |
| Building 29 | 92 is administered t                  | by the Environmental Programs [       | Directorate. Residual contamination e      | xists throughout the      | facility from the past | operation of       | a rotating target  | neutron source.     | ,                |                         |                     | , ,                | , ,         |                                                  | , ,                | ` ,        |              | , ,         |                                                  |
|             |                                       |                                       |                                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
| 292         | 1200,1202                             | Room Air                              | Contamination                              | H-3                       | 1.8E+00                | 1.0E-03            | NA<br>NA           | NA<br>NA            | NA NA            | None                    | 1                   | 1.8E-03            | 1380        | ESE                                              | 3.9E-06            | 655        | W            | 9.2E-05     | 2                                                |
|             | 1204<br>1402, 1402A                   | Room Air<br>Room Air                  | Contamination Contamination                | H-3<br>H-3                | 2.3E+01<br>1.8E+00     | 1.0E-03<br>1.0E-03 | NA<br>NA           | NA<br>NA            | NA<br>NA         | None<br>None            | 1                   | 2.3E-02<br>1.8E-03 |             |                                                  |                    |            |              |             | -                                                |
|             | 1404, 1406                            | HOOIII AII                            | Contamination                              | п-3                       | 1.6E+00                | 1.02-03            | INA                | INA                 | INA              | None                    | ı                   | 1.6E-03            |             |                                                  |                    |            |              |             |                                                  |
|             | 1407                                  |                                       |                                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             | + +                                              |                    |            |              |             |                                                  |
|             | 1.07                                  |                                       |                                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             | 1                                                |                    |            |              |             |                                                  |
| Building 29 | 98 is part of the Las                 | ser Fusion Program. Small amou        | ints of tritium are used in this facility  | n conjunction with fu     | usion target research  | and developn       | nent.              |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       |                                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
| 298         | 160                                   | Room Air                              | D-T layering experiment                    | H-3                       | 4.0E-03                | 1.0E+00            | NA                 | NA                  | NA               | None                    | 1                   | 4.0E-03            | 1398        | SE                                               | 5.7E-07            | 264        | NNE          | 3.0E-05     | 2                                                |
| 000         | 189                                   | FHE-14                                | Loon fusion toward costing                 | U-238                     | 1.3E-04                | 1.0E-03            | 6.4                | 0.63                | 15.1             | HEPA                    | 0.01                | 1.3E-09            | 1398        | SE                                               | 1.9E-08            | 344        | NE           | 6.3E-05     |                                                  |
| 298         | 189                                   | FHE-14                                | Laser fusion target coating                | 0-238                     | 1.3E-04                | 1.0E-03            | 6.4                | 0.63                | 15.1             | HEPA                    | 0.01                | 1.3E-09            | 1398        | - SE                                             | 1.9E-08            | 344        | NE.          | 6.3E-05     | 2                                                |
| 298         | Various                               | Room Air                              | Laser fusion target research               | H-3                       | 1.0E-03                | 1.0E+00            | NA                 | NA                  | NA               | None                    | 1                   | 1.0E-03            | 1398        | SE                                               | 1.4E-07            | 264        | NNE          | 7.6E-06     | 2                                                |
|             |                                       |                                       | and development                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             | <del>                                     </del> |                    |            |              |             |                                                  |
|             |                                       |                                       | ·                                          |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       | ion Shops and are part of the Mechar       |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       | be moved from machine to machine.          |                           | d uranium parts occas  | sionally under     | go heat treatmen   | t. The amount of    | depleted uraniu  | ım that is handled de   | pends               |                    |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       | OTE: Machining only occurs in 321C         |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
| **Stack en  | nissions have been                    | combined as permitted by the EP       | A/DOE Memorandum of Understandin           | g.<br>1                   |                        |                    |                    |                     |                  |                         |                     |                    |             | +                                                |                    |            |              |             | -                                                |
| 321A        | 1001A                                 | FHE-24                                | Machining and manufacturing                | U-234                     | 7.5E-04                | 1.0E-06            | 3.7                | 0.46                | 2.9              | HEPA                    | 0.01                | 7.5E-12            | 1032        | ENE                                              | 1.10E-08           | 326        | SW           | 8.3E-06     | 2                                                |
| 02 IA       | 7001A                                 | 1112-27                               | macining and manuacturing                  | U-235                     | 1.0E-04                | 1.0E-06            | 5.7                | 0.70                | 2.5              | 11117                   | 0.01                | 1.0E-12            | 1002        | L 4L                                             | 1.102-00           | 020        | 044          | 3.0L-00     |                                                  |
|             |                                       |                                       |                                            | U-238                     | 8.1E-03                | 1.0E-06            |                    |                     |                  |                         |                     | 8.1E-11            |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       |                                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
| 321C        | 234B                                  | FHE-13                                | Lapping of DU metal                        | U-238                     | 1.6E-04                | 1.0E-06            | 10.7               | 0.49                | 2.5              | None                    | 1                   | 1.6E-10            | 1032        | ENE                                              | 1.80E-08           | 326        | SW           | 4.2E-08     | 2                                                |
|             |                                       |                                       |                                            | U-235                     | 2.0E-06                | 1.0E-06            |                    |                     |                  |                         |                     | 2.0E-12            |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       |                                            | U-234                     | 9.4E-06                | 1.0E-06            |                    |                     |                  |                         |                     | 9.4E-12            |             | +                                                |                    |            |              |             |                                                  |
| 2010        | Various**                             | FHE-9                                 | Machining and manufacturing                | U-234                     | 3.2E+00                | 1.0E-06            | 8.5                | 0.31                | 16.1             | HEPA                    | 0.01                | 3.2E-08            | 1032        | ENE                                              | 3.4E-08            | 252        | SW           | 6.2E-06     | 2                                                |
| 321C        | Various**                             | FHE-11                                | Machining and manufacturing                | U-235                     | 4.0E-02                | 1.0E-06            | 12.5               | 0.60                | 16.1<br>6.0      | HEPA                    | 0.01                | 4.0E-10            | 1032        | DNE                                              | 3.4E-06            | 252        | SVV          | 0.2E-00     |                                                  |
|             |                                       | FHE-15                                |                                            | U-238                     | 3.0E-01                | 1.0E-06            | 11.2               | 0.00                | 13.4             | HEPA                    | 0.01                | 3.0E-09            |             | + +                                              |                    |            |              |             |                                                  |
|             |                                       | FEV-1000                              |                                            | 0-200                     | 0.0E-01                | 1.02-00            | 11.3               | 0.83                | 6.5              | HEPA                    | 0.01                | 0.0L-03            |             | 1                                                |                    |            |              |             |                                                  |
|             |                                       |                                       |                                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
| Building 32 | 22 is operated by th                  | ne Mechanical Engineering Depart      | ment.                                      |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       |                                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
| 322         | 109                                   | FHE-1                                 | Cleaning and plating                       | U-234                     | 3.1E-07                | 1.0E-06            | 7.9                | 0.35                | 1.0              | None                    | 1                   | 3.1E-13            | 930         | ENE                                              | 5.0E-10            | 416        | SW           | 1.8E-09     | 2                                                |
|             |                                       |                                       | of depleted uranium                        | U-235<br>U-238            | 4.3E-08<br>3.3E-06     | 1.0E-06<br>1.0E-06 |                    |                     |                  |                         |                     | 4.3E-14<br>3.3E-12 |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       |                                            | 0-236                     | 3.3E-00                | 1.02-06            |                    |                     |                  |                         |                     | 3.3E-12            |             | + +                                              |                    |            |              |             | <del></del>                                      |
| Buildina 32 | ⊥<br>27 is operated by th             | I<br>ne Mechanical Engineering Depart | ment.                                      |                           |                        |                    |                    |                     |                  |                         |                     |                    |             | +                                                |                    |            |              |             |                                                  |
|             |                                       |                                       |                                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
| 327         | 1275                                  | Room Air                              | Non-destructive ultrasonic                 | U-234                     | 1.3E-05                | 1.0E-06            | NA                 | NA                  | NA               | None                    | 1                   | 1.3E-11            | 1018        | ENE                                              | 1.9E-08            | 425        | SW           | 1.2E-07     | 2                                                |
|             |                                       |                                       | material evaluation                        | U-235                     | 1.9E-06                | 1.0E-06            |                    |                     |                  |                         |                     | 1.9E-12            |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       |                                            | U-238                     | 1.4E-04                | 1.0E-06            |                    |                     |                  |                         |                     | 1.4E-10            |             |                                                  |                    |            |              |             | -                                                |
| Building 31 | 21 is operated by th                  | Dofonso and Nuclear Technology        | gies Directorate. The building house       | the tritium recearch      | facility and accoriate | d Jahoratorio      | 6                  |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
|             | · · · · · · · · · · · · · · · · · · · |                                       | continuously monitored in compliance       |                           |                        |                    |                    | npproach are used   | d to determine e | emissions               |                     |                    |             | +                                                |                    |            |              |             |                                                  |
|             |                                       |                                       | A/DOE Memorandum of Understandin           |                           | lationer morntening a  |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
| ***Calculat | ted dose of 4.3E-03                   | mrem includes modeling the HT e       | emissions as HTO, as directed by U.S.      | EPA, Region IX. Th        | ne dose from HT and H  | TO emission        | s calculated appre | opriately using the | NEWTRIT mod      | el is 3.1e-03. See disc | cussion on page 30  | ).                 |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       |                                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
| 331         | All**                                 | Stack 1                               | Tritium research and development           | H-3                       | *                      | 1.0E+00            | 30.0               | 1.22                | 7.6              | None                    | 1                   | 2.7E+00            | 957         | ENE ON THE                                       | 4.3E-03            | 957        | ENE          | 4.3E-03     | 3                                                |
|             |                                       | Stack 2                               | Decontamination of parts                   | H-3                       | *                      | 1.0E+00            | 30.0               | 1.22                | 10.5             | None                    | 1                   | 1.7E+01            |             | 3.1E-03 ***                                      |                    |            |              | 3.1E-03 *** | -                                                |
| Building 31 | 32 is operated by th                  | l<br>ne Defense Sciences Program for  | plutonium research. Exhausts from g        | love hox operations       | and the workplace      | -                  |                    |                     |                  |                         |                     |                    |             | + +                                              |                    |            |              |             | <del>                                     </del> |
|             |                                       |                                       | s. Exhausts are monitored with both        |                           |                        | ıtonium-speci      | fic, continuous re | al-time monitors (  | CAMs).           |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       | ciated with specific tasks is classified,  |                           |                        |                    |                    |                     |                  | The air monitoring da   | ta for all emission | points             |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       | w the limit of sensitivity of the analytic |                           |                        |                    |                    |                     | <u> </u>         |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
| **Because   | monitoring takes pl                   | lace after HEPA filtration, an unal   | pated EDE cannot be determined (see        | discussion on page        | 38.)                   |                    |                    |                     |                  |                         |                     |                    |             | 1                                                |                    |            |              |             |                                                  |
| 000         | In our are at a d                     | FUE 4000/0000                         | Distanting                                 | Teo                       | *                      | NIA.               | 0.0                | 0.004.4             | 47.0             | Decitio UEDA            | 0.000001            | 0.05.00            | 0.10        |                                                  | 0.05:00            | **         | **           | **          | _                                                |
| 332         | Increment 1<br>Rooms                  | FHE-1000/2000                         | Plutonium research                         | Transuranics              | -                      | NA                 | 8.8                | 0.8x1.1             | 17.3             | Double HEPA             | 0.000001            | 0.0E+00            | 912         | ENE                                              | 0.0E+00            |            |              |             | 3                                                |
|             | TIOOHIS                               |                                       |                                            |                           |                        |                    |                    | +                   |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
| 332         | Increment 1                           | FGBE-1000/2000                        | Plutonium research                         | Transuranics              | *                      | NA                 | 11                 | 0.3                 | 6.9              | Triple HEPA             | 0.000001            | 0.0E+00            | 912         | ENE                                              | 0.0E+00            | **         | **           | **          | 3                                                |
|             | Glove boxes                           |                                       |                                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       |                                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
| 332         | Downdraft                             | FHE-4/5                               | Plutonium research                         | Transuranics              | *                      | NA                 | 11                 | 0.2                 | 14.2             | Double HEPA             | 0.0001              | 0.0E+00            | 912         | ENE                                              | 0.0E+00            | **         | **           | **          | 3                                                |
| 000         | 10                                    | FE 4                                  | Distantion                                 | T                         | *                      |                    |                    | 0.0.00              | 4.0              | LIEDA                   | 0.01                | 0.05.00            | 610         |                                                  | 0.05.00            | **         | **           | **          | <u> </u>                                         |
| 332         | Loft                                  | FE-4<br>FE-5                          | Plutonium research Plutonium research      | Transuranics Transuranics | *                      | NA<br>NA           | 11                 | 0.6x0.9<br>0.6x0.9  | 4.6<br>4.6       | HEPA<br>HEPA            | 0.01                | 0.0E+00<br>0.0E+00 | 912<br>912  | ENE<br>ENE                                       | 0.0E+00<br>0.0E+00 | **         | **           | **          | 3                                                |
|             |                                       | FE-0                                  | Fiutomum research                          | TTATISUTATIICS            |                        | INA                | 11                 | 0.080.9             | 4.0              | ПЕРА                    | 0.01                | 0.0⊆+00            | 312         |                                                  | 0.0⊑+00            |            |              |             |                                                  |
| 332         | Increment 1                           | FGBE-3000/4000                        | Plutonium research                         | Transuranics              | *                      | NA                 | 11                 | 0.3                 | 2                | Triple HEPA             | 0.000001            | 0.0E+00            | 912         | ENE                                              | 0.0E+00            | **         | **           | **          | 3                                                |
|             | Glove boxes                           |                                       |                                            |                           |                        |                    |                    |                     |                  | ·                       |                     |                    |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       |                                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |
|             |                                       |                                       |                                            |                           |                        |                    |                    |                     |                  |                         |                     |                    |             |                                                  |                    |            |              |             |                                                  |

| Buildina           | Room/Area             | Stack ID                         | Operation                                                                   | Radionuclides              | Annual Inventory              | Physical           | Stack               | Stack          | Stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control                               | Control Device | Estimated          | 10 mrem/v S | Site-Wide Dos | e Requirement | 0.1 mrem/  | y Monitoring | Requirement | Source   |
|--------------------|-----------------------|----------------------------------|-----------------------------------------------------------------------------|----------------------------|-------------------------------|--------------------|---------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|--------------------|-------------|---------------|---------------|------------|--------------|-------------|----------|
| <u> </u>           | 1100111/71100         | Oldon 15                         | oporano                                                                     | T ladio l'adiac            | with Potential for            | State              | Height (m)          | Diameter       | Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Device(s)                             | Abatement      | Annual Emissions   | Distance to |               | EDE           | Distance   | Direction    | Unabated    | Category |
|                    |                       |                                  |                                                                             |                            | Release (Ci)                  | Factor             |                     | (m)            | (m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | Factor         | (Ci)               | SWMEI (m)   | to SWMEI      | (mrem)        | to MEI (m) | to MEI       | EDE (mrem)  |          |
| 332                | Increment 3 Room and  | FFE-1000/2000<br>FGBE-7000/8000  | Plutonium research                                                          | Transuranics               | *                             | NA                 | 10.1                | 0.9            | 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Room—Double HEPA Glove Box—Triple HEP |                | 0.0E+00            | 912         | ENE           | 0.0E+00       | **         | **           | **          | 3        |
|                    | Glove boxes           | 1 GBL-7000/0000                  |                                                                             |                            |                               |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clove Box—Triple FIET                 |                |                    |             |               |               |            |              |             |          |
|                    |                       |                                  |                                                                             |                            |                               |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
| Building 34        | 1 is a Lasers Direct  | torate facility.                 |                                                                             |                            |                               |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
| 341                | 1107                  | Room Air                         | Blower decontamination                                                      | U-238                      | 9.6E-10                       | 1.00E-03           | NA                  | NA             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None                                  | 1              | 9.6E-13            | 872         | E             | 1.1E-10       | 770        | SW           | 2.90E-10    | 2        |
|                    |                       |                                  |                                                                             | U-235                      | 1.2E-11                       | 1.00E-03           |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | 1.2E-14            |             |               |               | 591        | SSW          | 2.90E-10    |          |
|                    |                       |                                  |                                                                             | U-234                      | 8.9E-11                       | 1.00E-03           |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | 8.9E-14            |             |               |               |            |              |             |          |
| The resear         | ch complex for the    | Biology and Biotechnology Rese   | arch Directorate includes Buildings 36                                      | 1<br>31, 362, 363, 364, 36 | ⊥<br>65, 366 and 377. Bui     | lding 365 cor      | tains               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
|                    |                       |                                  | al research, and incorporated in anima                                      |                            |                               |                    | •                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
|                    |                       |                                  | xhausted. Most of the organs that co<br>n-14, phosphorous-32, phosphorous-3 |                            |                               |                    |                     |                | nde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                |                    |             |               |               |            |              |             |          |
| THE TAGION         | delide sources in Di  | unung oor molude tritiam, carbo  | 11-14, phosphorous-oz, phosphorous c                                        | and Sundi-05, m            | ostry incorporated as         | constituent at     | onis (tracers) in c | rganic compoun | 103.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                |                    |             |               |               |            |              |             |          |
| 361                | 1020                  | Room Air                         | DNA hybridization                                                           | P-32                       | 1.3E-03                       | 1.0E-03            | NA                  | NA             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None                                  | 1              | 1.3E-06            | 918         | ESE           | 2.1E-08       | 976        | W            | 1.1E-07     | 2        |
| 361                | 1238                  | Room Air                         | P-32 Labeling                                                               | P-32                       | 8.0E-05                       | 1.0E-03            | NA                  | NA             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None                                  | 1              | 8.0E-08            | 918         | ESE           | 1.3E-09       | 976        | W            | 7.0E-09     | 2        |
| -001               | 1200                  | 11001117111                      | 1 oz zasemig                                                                | 1 02                       | 0.02 00                       | 1.02 00            | 101                 | 10.            | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110110                                |                | 0.02 00            | 0.10        |               | 1.02 00       | 0,70       |              | 7.02.00     |          |
| 361                | 1445                  | Room Air                         | Radiolabeling of DNA substrates                                             | P-32                       | 2.2E-04                       | 1.0E-03            | NA                  | NA             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None                                  | 1              | 2.2E-07            | 918         | ESE           | 6.2E-09       | 976        | W            | 3.4E-08     | 2        |
|                    |                       |                                  |                                                                             | S-35                       | 4.1E-04                       | 1.0E-03            |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | 4.1E-07            |             | + +           |               |            |              |             | -        |
| 361                | 1446                  | FHE-15                           | Radiolabeling of DNA substrates                                             | P-32                       | 5.5E-04                       | 1.0E-03            | 6.2                 | 0.42           | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                  | 1              | 5.5E-07            | 918         | ESE           | 8.7E-09       | 976        | W            | 4.7E-08     | 2        |
|                    |                       |                                  |                                                                             |                            |                               |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
| 361                | 1542                  | FHE-12                           | Hybridization and enzyme assay                                              | P-32                       | 2.0E-07                       | 1.0E-03            | 7.0                 | 0.41           | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                  | 1              | 2.0E-10            | 918         | ESE           | 2.9E-12       | 976        | W            | 1.5E-11     | 2        |
| 361                | 1546                  | FHE-10                           | DNA protein interaction studies                                             | P-32                       | 3.2E-04                       | 1.0E-03            | 1.7                 | 0.41           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                  | 1              | 3.2E-07            | 918         | ESE           | 4.9E-09       | 976        | W            | 2.5E-08     | 2        |
|                    |                       |                                  | •                                                                           |                            |                               |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | _                  |             |               |               |            |              |             |          |
| 361                | 1664                  | Room Air                         | DNA hybridization                                                           | P-32                       | 6.4E-04                       | 1.0E-03            | NA                  | NA             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None                                  | 1              | 6.4E-07            | 918         | ESE           | 1.0E-08       | 976        | W            | 5.6E-08     | 2        |
| 361                | 1742                  | FHE-8                            | DNA hybridization                                                           | P-32                       | 2.2E-04                       | 1.0E-03            | 7.0                 | 0.41           | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                  | 1              | 2.2E-07            | 918         | ESE           | 3.3E-09       | 976        | w            | 1.7E-08     | 2        |
|                    |                       |                                  |                                                                             |                            |                               |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
| 361                | 1846                  | Room Air                         | Human genome research                                                       | P-32                       | 2.6E-04                       | 1.0E-03            | NA                  | NA             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None                                  | 1              | 2.6E-07            | 918         | ESE           | 4.2E-09       | 976        | W            | 2.3E-08     | 2        |
| Building 36        | 2                     |                                  |                                                                             |                            |                               |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
| 362                | 105                   | FHE-1000                         | Compound purification by HPLC                                               | H-3                        | 1.0E-04                       | 1.0E-03            | 6.8                 | 0.65           | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                  | 1              | 1.0E-07            | 992         | ESE           | 1.4E-09       | 893        | W            | 9.4E-09     | 2        |
|                    |                       |                                  |                                                                             | C-14                       | 1.0E-04                       | 1.0E-03            |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | 1.0E-07            |             |               |               |            |              |             |          |
| 362                | 106                   | FHE-1000                         | Characterization of                                                         | C-14                       | 1.0E-08                       | 1.0E-03            | 6.8                 | 0.65           | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                  | 1              | 1.0E-11            | 992         | ESE           | 6.7E-09       | 893        | W            | 4.6E-08     | 2        |
| - 002              | 100                   | 1112 1000                        | metabolic pathways                                                          | H-3                        | 5.0E-04                       | 1.0E-03            | 0.0                 | 0.00           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140110                                |                | 5.0E-07            | 002         | -             | 0.7 2 00      | 000        | •••          | 4.02 00     |          |
|                    |                       |                                  |                                                                             |                            |                               |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
| Building 36<br>363 | 1009                  | FHE-2000                         | Human urine sample project                                                  | H-3                        | 1.0E-09                       | 1.0E-03            | 1.7                 | 0.41           | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HEPA                                  | 0.01           | 1.0E-14            | 1000        | ESE           | 1.5E-16       | 888        | w            | 1.2E-13     | 2        |
| 303                | 1009                  | 111L-2000                        | Truman unite sample project                                                 | C-14                       | 1.0E-09                       | 1.0E-03            | 1.7                 | 0.41           | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TILLA                                 | 0.01           | 1.0E-14            | 1000        | LOL           | 1.5L-10       | 000        | ***          | 1.2L-13     |          |
|                    |                       |                                  |                                                                             |                            |                               |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
| 363                | 1010                  | Room Air                         | HPLC analysis                                                               | H-3<br>C-14                | 1.0E-09                       | 1.0E-03            | NA                  | NA             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None                                  | 1              | 1.0E-12<br>1.0E-12 | 1000        | ESE           | 1.6E-14       | 888        | W            | 1.3E-13     | 2        |
|                    |                       |                                  |                                                                             | C-14                       | 1.0E-09                       | 1.0E-03            |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | 1.0E-12            |             |               |               |            |              |             |          |
| Building 36        |                       |                                  |                                                                             |                            |                               |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
| 364                | 1509                  | FHE-02P                          | AMS sample preparation                                                      | H-3                        | 5.5E-14                       | 1.0E+00            | 5.5                 | 0.52           | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                  | 1              | 5.5E-14            | 987         | ESE           | 8.6E-09       | 912        | W            | 6.8E-08     | 2        |
|                    |                       |                                  |                                                                             | C-14                       | 5.5E-07                       | 1.0E+00            |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | 5.5E-07            |             | + +           |               |            |              |             |          |
| 364                | 1509A                 | Room Air                         | AMS sample preparation                                                      | H-3                        | 5.5E-14                       | 1.0E+00            | NA                  | NA             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None                                  | 1              | 5.5E-14            | 987         | ESE           | 7.9E-09       | 912        | W            | 5.6E-08     | 2        |
|                    |                       |                                  |                                                                             | C-14                       | 5.5E-07                       | 1.0E+00            |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | 5.5E-07            |             |               |               |            |              |             |          |
| 364                | 1519                  | Room Air                         | DNA and protein extraction                                                  | C-14                       | 5.0E-06                       | 1.0E-03            | NA                  | NA             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None                                  | 1              | 5.0E-09            | 987         | ESE           | 8.0E-11       | 912        | w            | 6.3E-10     | 2        |
| 504                | 1313                  | i iooiii Ail                     | DIVA and protein extraction                                                 | H-3                        | 5.0E-06                       | 1.0E-03            | INA                 | INA            | INA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INOTIC                                | '              | 5.0E-09<br>5.0E-09 | 301         |               | 0.0L-11       | 314        |              | 0.3L-10     |          |
|                    |                       |                                  |                                                                             |                            |                               |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
| Building 36<br>365 | 104                   | FHE-1000                         | Equipment decontamination                                                   | C-14                       | 1.0E-09                       | 1.0E-03            | 6.1                 | 0.58           | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HEPA                                  | 0.01           | 1.0E-14            | 991         | ESE           | 1.2E-16       | 902        | W            | 6.1E-14     | 2        |
| 500                | 104                   | 1.UC-1000                        | Equipment decontamination                                                   | H-3                        | 1.0E-09<br>1.0E-09            | 1.0E-03<br>1.0E-03 | U. I                | 0.00           | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HEFA                                  | 0.01           | 1.0E-14<br>1.0E-14 | 331         | ESE           | 1.45-10       | 902        | VV           | U.IE-14     |          |
|                    |                       |                                  |                                                                             |                            |                               |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
| 365                | 109                   | FHE-5                            | Animal housing                                                              | C-14<br>H-3                | 1.3E-05<br>5.0E-08            | 1.0E-03<br>1.0E-03 | 1.7                 | 0.41           | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Double HEPA                           | 0.0001         | 1.3E-12<br>5.0E-15 | 991         | ESE           | 2.0E-14       | 902        | W            | 1.6E-09     | 2        |
|                    |                       |                                  |                                                                             | н-3                        | 5.0⊑-06                       | 1.00-03            |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | 3.UE-13            |             | + +           |               |            |              |             |          |
| Building 36        |                       |                                  |                                                                             |                            |                               |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
| 366                | 111                   | Room Air                         | Labeling                                                                    | P-32                       | 2.0E-03                       | 1.0E-03            | NA                  | NA             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None                                  | 1              | 2.0E-06            | 925         | ESE           | 3.2E-08       | 998        | W            | 1.7E-07     | 2        |
| Building 37        | B is part of the Fne  | ergy and Environment Directorate | Small quantities of radioactive trace                                       | <br>ers are handled in th  | is building                   |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             | + +           |               |            |              |             | -        |
| -ananig 07         | o .o pair or the Life |                                  | . Saii quantitios of radioactive trace                                      | are mandied in th          | Sullaning.                    |                    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
|                    |                       | FHE-1,11                         | Tracer work                                                                 | Am-243                     | 9.2E-12                       | 1.0E-03            | 8.5                 | 0.30           | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                  | 1              | 9.2E-15            | 875         | ESE           | 4.2E-12       | 1041       | W            | 1.9E-11     | 2        |
| 378                | 105                   |                                  | 1                                                                           |                            |                               |                    | 1                   |                | a contract of the contract of | 1                                     | 1              | 1.5E-17            | 1           | 1             |               | I          | 1            | 1           | 1        |
| 378                | 105                   | ,                                |                                                                             | Pu-239                     | 1.5E-14<br>1.5E-12            | 1.0E-03            |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |             |               |               |            |              |             |          |
| 378                | 105                   | ,                                |                                                                             | Pu-239<br>Pu-242<br>U-233  | 1.5E-14<br>1.5E-12<br>4.6E-11 | 1.0E-03<br>1.0E-03 |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | 1.5E-15<br>4.6E-14 |             |               |               |            |              |             |          |

| Building  | Room/Area                | Stack ID                           | Operation                                          | Radionuclides                                                                                                                                                                                                               | Annual Inventory                                                                                                                                                                                                                                                  | Physical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stack              | Stack               | Stack            | Control               | Control Device     | Estimated                                                                                                                                                                                                                                                                | 10 mram/y 9 | One abiW-ati | e Requirement      | 0.1 mram/  | v Monitorina | Requirement        | Source     |
|-----------|--------------------------|------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|------------------|-----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------------|------------|--------------|--------------------|------------|
|           | Hoom/Area                | Older ID                           | Орегалоп                                           | Tiadioridelides                                                                                                                                                                                                             | with Potential for                                                                                                                                                                                                                                                | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Height (m)         | Diameter            | Velocity         | Device(s)             | Abatement          | Annual Emissions                                                                                                                                                                                                                                                         | Distance to |              | EDE                | Distance   | Direction    | Unabated           | Category   |
|           |                          |                                    |                                                    |                                                                                                                                                                                                                             | Release (Ci)                                                                                                                                                                                                                                                      | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.9.11 (11.)     | (m)                 | (m/s)            |                       | Factor             | (Ci)                                                                                                                                                                                                                                                                     | -           | to SWMEI     | (mrem)             | to MEI (m) | to MEI       | EDE (mrem)         | - Lanegery |
| 378       | 120                      | FHE-1,2,3,4,5,8,9,10               | Tracer work                                        | Am-241                                                                                                                                                                                                                      | 1.2E-08                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.5                | 0.30                | 5.9              | None                  | 1                  | 1.2E-11                                                                                                                                                                                                                                                                  | 875         | ESE          | 2.6E-09            | 1041       | W            | 1.2E-08            | 2          |
|           |                          |                                    |                                                    | Am-243                                                                                                                                                                                                                      | 7.7E-11                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 7.7E-14                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | Cd-109                                                                                                                                                                                                                      | 7.7E-09                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 7.7E-12                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | Co-57                                                                                                                                                                                                                       | 3.1E-10                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 3.1E-13                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | Co-60                                                                                                                                                                                                                       | 1.2E-08                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 1.2E-11                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | Cs-134                                                                                                                                                                                                                      | 1.5E-07                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 1.5E-10                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | Cs-137                                                                                                                                                                                                                      | 1.5E-08                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 1.5E-11                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | Np-237                                                                                                                                                                                                                      | 3.1E-13                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 3.1E-16                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | Pu-239                                                                                                                                                                                                                      | 1.5E-11                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 1.5E-14                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | Pu-240                                                                                                                                                                                                                      | 1.2E-11                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 1.2E-14                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | Pu-242                                                                                                                                                                                                                      | 1.5E-12                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 1.5E-15                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | Pu-244                                                                                                                                                                                                                      | 7.7E-11                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 7.7E-14                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | Sr-85                                                                                                                                                                                                                       | 1.4E-08                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 1.4E-11                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | U-238                                                                                                                                                                                                                       | 1.5E-13                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 1.5E-16                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | U-235                                                                                                                                                                                                                       | 6.8E-15                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 6.8E-18                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | U-234                                                                                                                                                                                                                       | 1.6E-13                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 1.6E-16                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | U-238                                                                                                                                                                                                                       | 2.8E-13                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 2.8E-16                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | U-235                                                                                                                                                                                                                       | 3.6E-15                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 3.6E-18                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | U-234                                                                                                                                                                                                                       | 2.6E-14                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 2.6E-17                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                     |                  |                       |                    |                                                                                                                                                                                                                                                                          |             |              |                    |            |              |                    |            |
|           |                          |                                    | ppe Separation (U-AVLIS) program, ope              |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   | orporation (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ISEC). In June 19  | 99, USEC suspe<br>⊺ | naed turther dev | reiopment of the U-A\ | LIS technology.    |                                                                                                                                                                                                                                                                          |             | +            |                    |            |              |                    | -          |
|           |                          |                                    | n-series high efficiency particulate (HE           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>           | - NEOUAR - 17 3     | ED 04            |                       |                    |                                                                                                                                                                                                                                                                          |             |              |                    |            |              |                    | -          |
|           |                          |                                    | r atmospheric discharge points, although           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   | onitoring is n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ot required per th | e NESHAPs 40 C<br>⊺ | ⊢H 61 regulatio  | ns.                   |                    |                                                                                                                                                                                                                                                                          |             |              |                    |            |              |                    | -          |
| ~ Because | monitoring takes pl      | ace atter HEPA filtration, an unab | pated EDE cannot be determined (see                | discussion on page                                                                                                                                                                                                          | 38.)                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                     |                  |                       |                    |                                                                                                                                                                                                                                                                          |             | +            |                    |            |              |                    | -          |
| 401       | A.11                     | Fre 4                              | 0.4 -5                                             | 0                                                                                                                                                                                                                           | *                                                                                                                                                                                                                                                                 | N: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.1              | 0.0                 | 10.1             | Deuth UEDA            | 0.0004             | 0.05.00                                                                                                                                                                                                                                                                  | 1000        | 00-          | 0.05.00            | **         | **           | **                 | -          |
| 491       | All                      | FFE-1                              | Out of service                                     | Gross alpha                                                                                                                                                                                                                 | *                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.1                | 0.9                 | 12.1             | Double HEPA           | 0.0001             | 0.0E+00                                                                                                                                                                                                                                                                  | 1000        | SSE          | 0.0E+00            | **         | **           | **                 | 3          |
|           |                          |                                    |                                                    | Gross beta                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                     |                  |                       |                    | 0.0E+00                                                                                                                                                                                                                                                                  |             | 1            |                    |            |              |                    | -          |
| D 11 11 5 | 10: 11:11                |                                    | Division The Control of the State                  | 1 1 1 1 1                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                  | 0 1: 1:0: 1:        |                  |                       | , , , ,            | P 1                                                                                                                                                                                                                                                                      |             |              |                    |            |              |                    |            |
|           |                          |                                    | Division. The Stabilization Unit is a r            |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                     |                  |                       |                    |                                                                                                                                                                                                                                                                          |             |              |                    |            |              |                    |            |
| The Micro | ofiltration Unit filters | out waste radioactive particles. I | n the Laboratory, small quantities of w            | aste materials are s                                                                                                                                                                                                        | sampled, treated, and                                                                                                                                                                                                                                             | stored. No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | releases are ass   | umed to occur fro   | m waste storag   | e because the wastes  | are fully containe | d.                                                                                                                                                                                                                                                                       |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                     |                  |                       |                    |                                                                                                                                                                                                                                                                          |             |              |                    |            |              |                    |            |
| 540       | 0. 1                     | - A:                               | <del>-</del>                                       | 11.0                                                                                                                                                                                                                        | 4.05.00                                                                                                                                                                                                                                                           | 4.05.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  | N.                    |                    | 4.05.00                                                                                                                                                                                                                                                                  | 500         |              | 1.15.00            | 0.1.7      |              | 0.05.00            |            |
| 513       | Stabilization            | Room Air                           | Treatment of hazardous, mixed                      | H-3                                                                                                                                                                                                                         | 4.6E-03                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                 | NA                  | NA               | None                  | 1                  | 4.6E-06                                                                                                                                                                                                                                                                  | 588         | NE           | 1.1E-06            | 217        | SW           | 2.3E-06            | 1          |
|           |                          |                                    | or radioactive waste                               | Pu-239                                                                                                                                                                                                                      | 1.5E-07                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 1.5E-10                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | Th-232                                                                                                                                                                                                                      | 1.2E-07                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 1.2E-10                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    | 1                                                  | U-234                                                                                                                                                                                                                       | 1.2E-07                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    |                                                                                                                                                                                                                                                                          |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                     |                  |                       |                    | 1.2E-10                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | U-235                                                                                                                                                                                                                       | 1.6E-08                                                                                                                                                                                                                                                           | 1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                     |                  |                       |                    | 1.6E-11                                                                                                                                                                                                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                     |                  |                       |                    |                                                                                                                                                                                                                                                                          |             |              |                    |            |              |                    |            |
|           |                          |                                    |                                                    | U-235<br>U-238                                                                                                                                                                                                              | 1.6E-08<br>1.3E-06                                                                                                                                                                                                                                                | 1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                     |                  |                       |                    | 1.6E-11<br>1.3E-09                                                                                                                                                                                                                                                       |             |              |                    |            |              |                    |            |
| 513       | 1000A                    | FHE-4                              | Process optimization and                           | U-235<br>U-238<br>I-125                                                                                                                                                                                                     | 1.6E-08<br>1.3E-06<br>7.8E-07                                                                                                                                                                                                                                     | 1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.5               | 0.30                | 5.5              | HEPA                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12                                                                                                                                                                                                                                            | 588         | NE NE        | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
| 513       | 1000A                    | FHE-4                              | Process optimization and treatibility studies      | U-235<br>U-238<br>I-125<br>I-131                                                                                                                                                                                            | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08                                                                                                                                                                                                                          | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.5               | 0.30                | 5.5              | HEPA                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13                                                                                                                                                                                                                                 | 588         | NE NE        | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
| 513       | 1000A                    | FHE-4                              | ·                                                  | U-235<br>U-238<br>I-125<br>I-131<br>Cs-137                                                                                                                                                                                  | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07                                                                                                                                                                                                               | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.5               | 0.30                | 5.5              | HEPA                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12                                                                                                                                                                                                                      | 588         | NE NE        | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
| 513       | 1000A                    | FHE-4                              | ·                                                  | U-235<br>U-238<br>I-125<br>I-131<br>Cs-137<br>C-14                                                                                                                                                                          | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04                                                                                                                                                                                                    | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.5               | 0.30                | 5.5              | HEPA                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09                                                                                                                                                                                                           | 588         | NE NE        | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
| 513       | 1000A                    | FHE-4                              | ·                                                  | U-235<br>U-238<br>I-125<br>I-131<br>Cs-137<br>C-14<br>Cs-134                                                                                                                                                                | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08                                                                                                                                                                                         | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.5               | 0.30                | 5.5              | НЕРА                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13                                                                                                                                                                                                | 588         | NE NE        | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
| 513       | 1000A                    | FHE-4                              | ·                                                  | U-235<br>U-238<br>I-125<br>I-131<br>Cs-137<br>C-14<br>Cs-134<br>Ba-133                                                                                                                                                      | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08<br>2.0E-09                                                                                                                                                                              | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.5               | 0.30                | 5.5              | HEPA                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14                                                                                                                                                                                     | 588         | NE NE        | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
| 513       | 1000A                    | FHE-4                              | ·                                                  | U-235<br>U-238<br>I-125<br>I-131<br>Cs-137<br>C-14<br>Cs-134<br>Ba-133<br>P-32                                                                                                                                              | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08<br>2.0E-09<br>3.3E-06                                                                                                                                                                   | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                     | 10.5               | 0.30                | 5.5              | НЕРА                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11                                                                                                                                                                          | 588         | NE NE        | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
| 513       | 1000A                    | FHE-4                              | ·                                                  | U-235<br>U-238<br>I-125<br>I-131<br>Cs-137<br>C-14<br>Cs-134<br>Ba-133<br>P-32<br>Pu-238                                                                                                                                    | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08<br>2.0E-09<br>3.3E-06<br>1.8E-09                                                                                                                                                        | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                                                     | 10.5               | 0.30                | 5.5              | НЕРА                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14                                                                                                                                                               | 588         | NE .         | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
| 513       | 1000A                    | FHE-4                              | ·                                                  | U-235<br>U-238<br>I-125<br>I-131<br>Cs-137<br>C-14<br>Cs-134<br>Ba-133<br>P-32<br>Pu-238<br>Pu-239                                                                                                                          | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08<br>2.0E-09<br>3.3E-06<br>1.8E-09<br>1.4E-07                                                                                                                                             | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                                          | 10.5               | 0.30                | 5.5              | HEPA                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14<br>1.4E-12                                                                                                                                                    | 588         | NE .         | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
| 513       | 1000A                    | FHE-4                              | ·                                                  | U-235<br>U-238<br>I-125<br>I-131<br>Cs-137<br>C-14<br>Cs-134<br>Ba-133<br>P-32<br>Pu-238<br>Pu-239<br>Pu-240                                                                                                                | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08<br>2.0E-09<br>3.3E-06<br>1.8E-09<br>1.4E-07<br>2.1E-08                                                                                                                                  | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                                          | 10.5               | 0.30                | 5.5              | HEPA                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14<br>1.4E-12<br>2.1E-13                                                                                                                                         | 588         | NE NE        | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
| 513       | 1000A                    | FHE-4                              | ·                                                  | U-235<br>U-238<br>I-125<br>I-131<br>Cs-137<br>C-14<br>Cs-134<br>Ba-133<br>P-32<br>Pu-238<br>Pu-238<br>Pu-239<br>Pu-240<br>Am-241                                                                                            | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08<br>2.0E-09<br>3.3E-06<br>1.8E-09<br>1.4E-07<br>2.1E-08<br>4.2E-08                                                                                                                       | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                               | 10.5               | 0.30                | 5.5              | HEPA                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14<br>1.4E-12<br>2.1E-13<br>4.2E-13                                                                                                                              | 588         | NE           | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
| 513       | 1000A                    | FHE-4                              | ·                                                  | U-235<br>U-238<br>I-125<br>I-131<br>Cs-137<br>C-14<br>Cs-134<br>Ba-133<br>P-32<br>Pu-238<br>Pu-239<br>Pu-240<br>Am-241<br>Pu-241                                                                                            | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08<br>2.0E-09<br>3.3E-06<br>1.8E-09<br>1.4E-07<br>2.1E-08<br>4.2E-08<br>1.3E-06                                                                                                            | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                    | 10.5               | 0.30                | 5.5              | HEPA                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14<br>1.4E-12<br>2.1E-13<br>4.2E-13<br>1.3E-11                                                                                                                   | 588         | NE           | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
| 513       | 1000A                    | FHE-4                              | ·                                                  | U-235<br>U-238<br>I-125<br>I-131<br>Cs-137<br>C-14<br>Cs-134<br>Ba-133<br>P-32<br>Pu-238<br>Pu-239<br>Pu-240<br>Am-241<br>Pu-241<br>Th-232                                                                                  | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08<br>2.0E-09<br>3.3E-06<br>1.8E-09<br>1.4E-07<br>2.1E-08<br>4.2E-08<br>1.3E-06<br>4.6E-09                                                                                                 | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                         | 10.5               | 0.30                | 5.5              | HEPA                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14<br>1.4E-12<br>2.1E-13<br>4.2E-13<br>1.3E-11<br>4.6E-14                                                                                                        | 588         | NE NE        | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
| 513       | 1000A                    | FHE-4                              | ·                                                  | U-235<br>U-238<br>I-125<br>I-131<br>Cs-137<br>C-14<br>Cs-134<br>Ba-133<br>P-32<br>Pu-238<br>Pu-239<br>Pu-240<br>Am-241<br>Pu-241                                                                                            | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08<br>2.0E-09<br>3.3E-06<br>1.8E-09<br>1.4E-07<br>2.1E-08<br>4.2E-08<br>1.3E-06                                                                                                            | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                                    | 10.5               | 0.30                | 5.5              | HEPA                  | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14<br>1.4E-12<br>2.1E-13<br>4.2E-13<br>1.3E-11                                                                                                                   | 588         | NE NE        | 8.7E-09            | 128        | SW           | 1.3E-08            | 2          |
|           |                          |                                    | treatibility studies                               | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Pu-241 Th-232 Pu-242                                                                                                                    | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08<br>2.0E-09<br>3.3E-06<br>1.8E-09<br>1.4E-07<br>2.1E-08<br>4.2E-08<br>1.3E-06<br>4.6E-09<br>7.1E-07                                                                                      | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                         |                    |                     |                  |                       |                    | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14<br>1.4E-12<br>2.1E-13<br>4.2E-13<br>1.3E-11<br>4.6E-14<br>7.1E-12                                                                                             |             |              |                    |            |              |                    |            |
| 513       | 1000A                    | FHE-4  Room Air                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Th-232 Pu-241 Am-242                                                                                                                    | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08<br>2.0E-09<br>3.3E-06<br>1.8E-09<br>1.4E-07<br>2.1E-08<br>4.2E-08<br>1.3E-06<br>4.6E-09<br>7.1E-07                                                                                      | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                                         | NA                 | 0.30<br>NA          | 5.5<br>NA        | HEPA  None            | 0.01               | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14<br>1.4E-12<br>2.1E-13<br>4.2E-13<br>1.3E-11<br>4.6E-14<br>7.1E-12                                                                                             | 588         | NE NE        | 8.7E-09<br>2.7E-05 | 128        | SW           | 1.3E-08<br>5.5E-05 | 2          |
|           |                          |                                    | treatibility studies                               | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Th-232 Pu-241 Th-232 Pu-242  Am-241 Am-243                                                                                              | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08<br>2.0E-09<br>3.3E-06<br>1.8E-09<br>1.4E-07<br>2.1E-08<br>4.2E-08<br>1.3E-06<br>4.6E-09<br>7.1E-07                                                                                      | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                                              | NA                 |                     |                  |                       |                    | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14<br>1.4E-12<br>2.1E-13<br>4.2E-13<br>1.3E-11<br>4.6E-14<br>7.1E-12                                                                                             |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Th-232 Pu-242  Am-241 Am-243 Ba-133                                                                                                     | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 4.6E-09 7.1E-07                                                                                                                                  | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                                        | NA                 |                     |                  |                       |                    | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14<br>1.4E-12<br>2.1E-13<br>4.2E-13<br>1.3E-11<br>4.6E-14<br>7.1E-12                                                                                             |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Pu-241 Th-232 Pu-242  Am-243 Ba-133 Bi-207                                                                                              | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 4.6E-09 7.1E-07  3.2E-06 2.4E-07 2.9E-07 1.4E-08                                                                                                 | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                             | NA                 |                     |                  |                       |                    | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14<br>1.4E-12<br>2.1E-13<br>4.2E-13<br>1.3E-11<br>4.6E-14<br>7.1E-12<br>3.2E-09<br>2.4E-10<br>2.9E-10<br>1.4E-11                                                 |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Pu-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210                                                                                | 1.6E-08<br>1.3E-06<br>7.8E-07<br>2.8E-08<br>2.5E-07<br>2.6E-04<br>3.1E-08<br>2.0E-09<br>3.3E-06<br>1.8E-09<br>1.4E-07<br>2.1E-08<br>4.2E-08<br>1.3E-06<br>4.6E-09<br>7.1E-07<br>3.2E-06<br>2.4E-07<br>2.9E-07<br>1.4E-08                                          | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                                             | NA                 |                     |                  |                       |                    | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14<br>1.4E-12<br>2.1E-13<br>4.2E-13<br>1.3E-11<br>4.6E-14<br>7.1E-12<br>3.2E-09<br>2.4E-10<br>2.9E-10<br>1.4E-11<br>1.6E-11                                      |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Pu-241 Th-232 Pu-242 Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14                                                                            | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 4.6E-09 7.1E-07 3.2E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08                                                                                          | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03                                                                                                                                                                                                                                                                                       | NA                 |                     |                  |                       |                    | 1.6E-11<br>1.3E-09<br>7.8E-12<br>2.8E-13<br>2.5E-12<br>2.6E-09<br>3.1E-13<br>2.0E-14<br>3.3E-11<br>1.8E-14<br>1.4E-12<br>2.1E-13<br>4.2E-13<br>1.3E-11<br>4.6E-14<br>7.1E-12<br>3.2E-09<br>2.4E-10<br>2.9E-10<br>1.4E-11<br>1.6E-11<br>1.6E-08                           |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14 Cd-109                                                                           | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 4.6E-09 7.1E-07  3.2E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08 1.6E-08                                                                                 | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.00E-03<br>1.00E-03                                                                                                                                                                                                                                                                          | NA                 |                     |                  |                       |                    | 1.6E-11 1.3E-09  7.8E-12 2.8E-13 2.5E-12 2.6E-09 3.1E-13 2.0E-14 3.3E-11 1.4E-12 2.1E-13 4.2E-13 1.3E-11 4.6E-14 7.1E-12  3.2E-09 2.4E-10 2.9E-10 1.4E-11 1.6E-18 4.8E-14                                                                                                |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14 Cd-109 Ce-139                                                                    | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 4.6E-09 7.1E-07  3.2E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08 1.6E-05 4.8E-11 1.6E-14                                                                 | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03                                                                                                                                                                                                                                                             | NA                 |                     |                  |                       |                    | 1.6E-11 1.3E-09 7.8E-12 2.8E-13 2.5E-12 2.6E-09 3.1E-13 2.0E-14 3.3E-11 1.8E-14 1.4E-12 2.1E-13 4.2E-13 1.3E-11 4.6E-14 7.1E-12 3.2E-09 2.4E-10 2.9E-10 1.4E-11 1.6E-08 4.8E-14 1.6E-17                                                                                  |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14 Cd-109 Ce-139 Ce-144                                                             | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 4.6E-09 7.1E-07  3.2E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08 1.6E-05 4.8E-11 1.6E-06                                                                 | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03                                                                                                                                                                                                                                                  | NA                 |                     |                  |                       |                    | 1.6E-11 1.3E-09  7.8E-12 2.8E-13 2.5E-12 2.6E-09 3.1E-13 2.0E-14 3.3E-11 1.8E-14 1.4E-12 2.1E-13 4.2E-13 1.3E-11 4.6E-14 7.1E-12  3.2E-09 2.4E-10 2.9E-10 1.4E-11 1.6E-08 4.8E-14 1.6E-17 1.6E-09                                                                        |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14 Cd-109 Ce-139 Ce-144 Cf-249                                                      | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 4.6E-09 7.1E-07  3.2E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08 1.6E-08 1.6E-05 4.8E-11 1.6E-14 1.6E-06                                                 | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03                                                                                                                                                                                                  | NA                 |                     |                  |                       |                    | 1.6E-11 1.3E-09  7.8E-12 2.8E-13 2.5E-12 2.6E-09 3.1E-13 2.0E-14 3.3E-11 1.8E-14 1.4E-12 2.1E-13 4.2E-13 1.3E-11 4.6E-14 7.1E-12 3.2E-09 2.4E-10 2.9E-10 1.4E-11 1.6E-08 4.8E-14 1.6E-09 1.6E-09 1.6E-01                                                                 |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Pu-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14 Cd-109 Ce-139 Ce-144 Cf-249 Cm-244                                        | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 4.6E-09 7.1E-07  3.2E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08 1.6E-08 1.6E-05 4.8E-11 1.6E-14 1.6E-06 1.6E-08                                         | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03                                                                                                                                                                                      | NA                 |                     |                  |                       |                    | 1.6E-11 1.3E-09  7.8E-12 2.8E-13 2.5E-12 2.6E-09 3.1E-13 2.0E-14 3.3E-11 1.8E-14 1.4E-12 2.1E-13 4.2E-13 1.3E-11 4.6E-14 7.1E-12 3.2E-09 2.4E-10 2.9E-10 1.4E-11 1.6E-08 4.8E-14 1.6E-09 1.6E-17 1.6E-09 1.6E-11 1.9E-10                                                 |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Pu-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14 Cd-109 Ce-139 Ce-139 Ce-144 Cf-249 Cm-244 Co-56                           | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08 1.6E-05 4.8E-11 1.6E-14 1.6E-06 1.6E-08 1.9E-07 3.2E-09                                                          | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03                                                                                                                                                                         | NA                 |                     |                  |                       |                    | 1.6E-11 1.3E-09  7.8E-12 2.8E-13 2.5E-12 2.6E-09 3.1E-13 2.0E-14 3.3E-11 1.8E-14 1.4E-12 2.1E-13 4.2E-13 1.3E-11 4.6E-14 7.1E-12 3.2E-09 2.4E-10 2.9E-10 1.4E-11 1.6E-11 1.6E-11 1.6E-08 4.8E-14 1.6E-17 1.6E-09 1.6E-11 1.9E-10 3.2E-12                                 |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14 Cd-109 Ce-139 Ce-144 Cf-249 Cm-244 Co-56 Co-57                                   | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 4.6E-09 7.1E-07  3.2E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08 1.6E-08 1.6E-08 1.9E-07 3.2E-09 8.6E-08                                                 | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03                                                                                                                                                                                                | NA                 |                     |                  |                       |                    | 1.6E-11 1.3E-09  7.8E-12 2.8E-13 2.5E-12 2.6E-09 3.1E-13 2.0E-14 3.3E-11 1.4E-12 2.1E-13 4.2E-13 1.3E-11 4.6E-14 7.1E-12  3.2E-09 2.4E-10 2.9E-10 1.4E-11 1.6E-11 1.6E-08 4.8E-14 1.6E-17 1.6E-09 1.6E-11 1.9E-10 3.2E-12 8.6E-11                                        |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14 Cd-109 Ce-139 Ce-144 Cf-249 Cm-244 Co-56 Co-57 Co-60                             | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 4.6E-09 7.1E-07  3.2E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08 1.6E-08 1.6E-06 1.6E-06 1.6E-06 1.6E-08 1.9E-07 3.2E-09 8.6E-08 5.0E-08                 | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03                                                                                                                                                                                   | NA                 |                     |                  |                       |                    | 1.6E-11 1.3E-09  7.8E-12 2.8E-13 2.5E-12 2.6E-09 3.1E-13 2.0E-14 3.3E-11 1.8E-14 1.4E-12 2.1E-13 4.2E-13 1.3E-11 4.6E-14 7.1E-12  3.2E-09 2.4E-10 2.9E-10 1.4E-11 1.6E-11 1.6E-08 4.8E-14 1.6E-17 1.6E-09 1.6E-11 1.9E-10 3.2E-12 8.6E-11 5.0E-11                        |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14 Cd-109 Ce-139 Ce-144 Cf-249 Cm-244 Co-56 Co-57 Co-60 Cs-134                      | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 4.6E-09 7.1E-07  3.2E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08 1.6E-08 1.6E-08 1.9E-07 3.2E-09 8.6E-08 5.0E-08                                         | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03<br>1.00E-03                                                                                                                                                                         | NA NA              |                     |                  |                       |                    | 1.6E-11 1.3E-09  7.8E-12 2.8E-13 2.5E-12 2.6E-09 3.1E-13 2.0E-14 3.3E-11 1.8E-14 1.4E-12 2.1E-13 4.2E-13 1.3E-11 4.6E-14 7.1E-12  3.2E-09 2.4E-10 2.9E-10 1.4E-11 1.6E-11 1.6E-08 4.8E-14 1.6E-09 1.6E-11 1.9E-10 3.2E-12 8.6E-11 5.0E-11 1.9E-10                        |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Pu-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14 Cd-109 Ce-139 Ce-144 Cf-249 Cm-244 Co-56 Co-57 Co-60 Cs-134 Cs-137        | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 4.6E-09 7.1E-07  3.2E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08 1.6E-05 4.8E-11 1.6E-14 1.6E-06 1.6E-08 1.9E-07 3.2E-09 8.6E-08 5.0E-08 1.9E-07 8.0E-06 | 1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0E-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03<br>1.0DE-03 | NA                 |                     |                  |                       |                    | 1.6E-11 1.3E-09  7.8E-12 2.8E-13 2.5E-12 2.6E-09 3.1E-13 2.0E-14 3.3E-11 1.8E-14 1.4E-12 2.1E-13 4.2E-13 1.3E-11 4.6E-14 7.1E-12 3.2E-09 2.4E-10 2.9E-10 1.4E-11 1.6E-08 4.8E-14 1.6E-09 1.6E-01 1.9E-10 3.2E-12 8.6E-11 5.0E-11 1.9E-10 8.0E-09                         |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Pu-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14 Cd-109 Ce-139 Ce-144 Cf-249 Cm-244 Co-56 Co-57 Co-60 Cs-134 Cs-137 Eu-152 | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.9E-07 3.2E-09 8.6E-08 5.0E-08 1.9E-07 8.0E-06 7.8E-07                                  | 1.0E-03 1.0DE-03 1.00E-03                                                                                                                                                                          | NA                 |                     |                  |                       |                    | 1.6E-11 1.3E-09  7.8E-12 2.8E-13 2.5E-12 2.6E-09 3.1E-13 2.0E-14 3.3E-11 1.8E-14 1.4E-12 2.1E-13 4.2E-13 1.3E-11 4.6E-14 7.1E-12 3.2E-09 2.4E-10 2.9E-10 1.4E-11 1.6E-08 4.8E-14 1.6E-09 1.6E-17 1.6E-09 1.6E-11 1.9E-10 3.2E-12 8.6E-11 5.0E-11 1.9E-10 8.0E-09 7.8E-10 |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14 Cd-109 Ce-139 Ce-144 Cf-249 Cm-244 Co-56 Co-57 Co-60 Cs-134 Cs-137 Eu-152 Eu-154 | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 4.6E-09 7.1E-07  3.2E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08 1.6E-08 1.6E-08 1.9E-07 3.2E-09 8.6E-08 5.0E-08 1.9E-07 8.0E-06 7.8E-07 7.7E-07         | 1.0E-03 1.0OE-03                                                                                                                                               | NA                 |                     |                  |                       |                    | 1.6E-11 1.3E-09  7.8E-12 2.8E-13 2.5E-12 2.6E-09 3.1E-13 2.0E-14 3.3E-11 1.8E-14 1.4E-12 2.1E-13 4.2E-13 1.3E-11 4.6E-14 7.1E-12  3.2E-09 2.4E-10 2.9E-10 1.4E-11 1.6E-11 1.6E-11 1.6E-09 1.6E-11 1.9E-10 3.2E-12 8.6E-11 5.0E-11 1.9E-10 8.0E-09 7.8E-10 7.7E-10        |             |              |                    |            |              |                    |            |
|           |                          |                                    | treatibility studies  Vacuum filtration of treated | U-235 U-238  I-125 I-131 Cs-137 C-14 Cs-134 Ba-133 P-32 Pu-238 Pu-239 Pu-240 Am-241 Pu-241 Th-232 Pu-242  Am-241 Am-243 Ba-133 Bi-207 Bi-210 C-14 Cd-109 Ce-139 Ce-144 Cf-249 Cm-244 Co-56 Co-57 Co-60 Cs-134 Cs-137 Eu-152 | 1.6E-08 1.3E-06  7.8E-07 2.8E-08 2.5E-07 2.6E-04 3.1E-08 2.0E-09 3.3E-06 1.8E-09 1.4E-07 2.1E-08 4.2E-08 1.3E-06 2.4E-07 2.9E-07 1.4E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.9E-07 3.2E-09 8.6E-08 5.0E-08 1.9E-07 8.0E-06 7.8E-07                                  | 1.0E-03 1.0DE-03 1.00E-03                                                                                                                                                                          | NA                 |                     |                  |                       |                    | 1.6E-11 1.3E-09  7.8E-12 2.8E-13 2.5E-12 2.6E-09 3.1E-13 2.0E-14 3.3E-11 1.8E-14 1.4E-12 2.1E-13 4.2E-13 1.3E-11 4.6E-14 7.1E-12 3.2E-09 2.4E-10 2.9E-10 1.4E-11 1.6E-08 4.8E-14 1.6E-09 1.6E-17 1.6E-09 1.6E-11 1.9E-10 3.2E-12 8.6E-11 5.0E-11 1.9E-10 8.0E-09 7.8E-10 |             |              |                    |            |              |                    |            |

| Building | Room/Area  | Stack ID    | Operation           | Radionuclides    | Annual Inventory   | Physical             | Stack      | Stack    | Stack                                            | Control   | Control Device | Estimated          | 10 mrem/y Site | -Wide Do          | se Requirement | 0.1 mrem/  | y Monitoring | Requirement | Source                                           |
|----------|------------|-------------|---------------------|------------------|--------------------|----------------------|------------|----------|--------------------------------------------------|-----------|----------------|--------------------|----------------|-------------------|----------------|------------|--------------|-------------|--------------------------------------------------|
|          |            |             | ·                   |                  | with Potential for | State                | Height (m) | Diameter | Velocity                                         | Device(s) | Abatement      | Annual Emissions   |                |                   | EDE            | Distance   | Direction    |             | Category                                         |
|          |            |             |                     |                  | Release (Ci)       | Factor               |            | (m)      | (m/s)                                            |           | Factor         | (Ci)               | SWMEI (m) t    | o SWMEI           | (mrem)         | to MEI (m) | to MEI       | EDE (mrem)  |                                                  |
| 514      | 108        | (continued) |                     | H-3              | 4.5E-05            | 1.00E-03             |            |          |                                                  |           |                | 4.5E-08            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | K-40             | 6.4E-07            | 1.00E-03             |            |          |                                                  |           |                | 6.4E-10            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Mn-54            | 3.7E-08            | 1.00E-03             |            |          |                                                  |           |                | 3.7E-11            |                | $\longrightarrow$ |                |            |              |             | <b></b> '                                        |
|          |            |             |                     | Na-22<br>Nb-95   | 4.5E-09<br>2.2E-09 | 1.00E-03<br>1.00E-03 |            |          |                                                  |           |                | 4.5E-12<br>2.2E-12 |                | $\longrightarrow$ |                |            | +            |             | +'                                               |
|          |            |             |                     | Ni-63            | 1.6E-09            | 1.00E-03             |            |          |                                                  |           |                | 1.6E-12            |                |                   |                |            | +            |             | +                                                |
|          |            |             |                     | Np-237           | 1.9E-07            | 1.00E-03             |            |          |                                                  |           |                | 1.9E-10            |                | $\overline{}$     |                |            |              |             | +                                                |
|          |            |             |                     | Np-239           | 3.8E-09            | 1.00E-03             |            |          | +                                                |           |                | 3.8E-12            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | P-32             | 9.6E-07            | 1.00E-03             |            |          |                                                  |           |                | 9.6E-10            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Pb-210           | 2.1E-07            | 1.00E-03             |            |          |                                                  |           |                | 2.1E-10            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Po-209           | 1.6E-08            | 1.00E-03             |            |          |                                                  |           |                | 1.6E-11            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Po-210           | 1.6E-08            | 1.00E-03             |            |          |                                                  |           |                | 1.6E-11            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Pu-238           | 2.1E-07            | 1.00E-03             |            |          |                                                  |           |                | 2.1E-10            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Pu-239<br>Pu-241 | 4.8E-06<br>5.8E-07 | 1.00E-03<br>1.00E-03 |            | -        |                                                  |           |                | 4.8E-09<br>5.8E-10 |                |                   |                | +          | +            |             | +                                                |
|          |            |             |                     | Pu-241<br>Pu-242 | 5.6E-07            | 1.00E-03             |            |          |                                                  |           |                | 5.6E-10            |                | $\longrightarrow$ |                | +          | +            | +           | +                                                |
|          |            |             |                     | Pu-244           | 1.6E-10            | 1.00E-03             |            | +        |                                                  |           |                | 1.6E-13            |                |                   |                | +          | +            | +           | +                                                |
|          |            |             |                     | Ra-226           | 1.6E-08            | 1.00E-03             |            |          |                                                  |           |                | 1.6E-11            |                | $\rightarrow$     |                |            |              |             | +                                                |
|          |            |             |                     | Sb-125           | 5.9E-08            | 1.00E-03             |            |          | +                                                |           |                | 5.9E-11            |                | -                 |                |            |              | 1           | +                                                |
|          |            |             |                     | Sr-90            | 1.6E-05            | 1.00E-03             |            |          |                                                  |           |                | 1.6E-08            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Tc-99            | 1.9E-07            | 1.00E-03             |            |          |                                                  |           |                | 1.9E-10            |                |                   |                |            |              |             | I                                                |
|          |            |             |                     | Th-228           | 2.4E-09            | 1.00E-03             |            |          |                                                  |           |                | 2.4E-12            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Th-229           | 1.9E-07            | 1.00E-03             |            |          | <b></b> '                                        |           |                | 1.9E-10            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Th-230           | 1.9E-07            | 1.00E-03             |            | +        |                                                  |           |                | 1.9E-10            |                |                   |                |            |              |             | +                                                |
|          |            |             |                     | Th-232<br>U-232  | 1.9E-07            | 1.00E-03<br>1.00E-03 |            |          | <del>                                     </del> |           |                | 1.9E-10<br>1.9E-10 |                |                   |                | +          |              |             | +                                                |
|          |            |             |                     | U-232            | 1.9E-07<br>4.2E-07 | 1.00E-03             |            |          |                                                  |           |                | 4.2E-10            |                |                   |                |            |              |             | +                                                |
|          |            |             |                     | U-234            | 3.1E-06            | 1.00E-03             |            |          |                                                  |           |                | 3.1E-09            |                | $\rightarrow$     |                |            |              |             | +                                                |
|          |            |             |                     | U-235            | 2.0E-07            | 1.00E-03             |            |          |                                                  |           |                | 2.0E-10            |                |                   |                |            |              |             | +                                                |
|          |            |             |                     | U-238            | 1.1E-05            | 1.00E-03             |            |          |                                                  |           |                | 1.1E-08            |                | -                 |                |            |              |             | +                                                |
|          |            |             |                     | Y-88             | 9.3E-09            | 1.00E-03             |            |          |                                                  |           |                | 9.3E-12            |                |                   |                |            |              |             | 1                                                |
|          |            |             |                     |                  |                    |                      |            |          |                                                  |           |                |                    |                |                   |                |            |              |             |                                                  |
| 514      | Evaporator | Room Air    | Waste consolidation | Am-241           | 1.0E-04            | 1.0E-03              | NA         | NA       | NA                                               | None      | 1              | 1.0E-07            | 528            | NE                | 5.8E-04        | 217        | SW           | 1.2E-03     | 1                                                |
|          |            |             |                     | Am-243           | 3.0E-06            | 1.0E-03              |            |          |                                                  |           |                | 3.0E-09            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Ba-133           | 3.6E-06            | 1.0E-03              |            |          |                                                  |           |                | 3.6E-09            |                |                   |                |            |              |             | <del>                                     </del> |
|          |            |             |                     | Bi-207           | 1.7E-07<br>2.0E-07 | 1.0E-03              | +          | -        |                                                  |           |                | 1.7E-10<br>2.0E-10 |                |                   |                | +          | +            | +           | +'                                               |
|          |            |             |                     | Bi-210<br>C-14   | 2.0E-07<br>2.0E-04 | 1.0E-03<br>1.0E-03   |            |          |                                                  |           |                | 2.0E-10<br>2.0E-07 |                |                   |                |            |              |             | +                                                |
|          |            |             |                     | Cd-109           | 6.0E-10            | 1.0E-03              | +          |          |                                                  |           |                | 6.0E-13            |                | $\rightarrow$     |                |            |              |             | +                                                |
|          |            |             |                     | Ce-139           | 2.0E-13            | 1.0E-03              |            |          |                                                  |           |                | 2.0E-16            |                |                   |                |            |              |             | +                                                |
|          |            |             |                     | Ce-144           | 2.0E-05            | 1.0E-03              |            |          |                                                  |           |                | 2.0E-08            |                |                   |                | _          | <del></del>  | +           | +                                                |
|          |            |             |                     | Cf-249           | 2.0E-07            | 1.0E-03              |            |          |                                                  |           |                | 2.0E-10            |                |                   |                |            |              |             | <b>T</b>                                         |
|          |            |             |                     | Cm-244           | 2.4E-06            | 1.0E-03              |            |          |                                                  |           |                | 2.4E-09            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Co-56            | 4.0E-08            | 1.0E-03              |            |          |                                                  |           |                | 4.0E-11            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Co-57            | 1.1E-06            | 1.0E-03              |            |          |                                                  |           |                | 1.1E-09            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Co-60            | 6.4E-07            | 1.0E-03              |            |          |                                                  |           |                | 6.4E-10            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Cs-134           | 2.4E-06            | 1.0E-03<br>1.0E-03   | +          | -        |                                                  |           |                | 2.4E-09<br>1.0E-07 |                |                   |                | +          | +            | +           | +                                                |
|          |            |             |                     | Cs-137<br>Eu-152 | 1.0E-04<br>9.7E-06 | 1.0E-03              | +          |          |                                                  |           |                | 9.7E-09            |                | $\longrightarrow$ |                |            | +            |             | +                                                |
|          |            |             |                     | Eu-152           | 9.7E-06            | 1.0E-03              | +          |          |                                                  |           |                | 9.7E-09            |                | $\overline{}$     |                |            |              |             | +                                                |
|          |            |             |                     | Eu-155           | 7.4E-07            | 1.0E-03              |            |          |                                                  |           |                | 7.4E-10            |                |                   |                | <b>T</b>   | <b>†</b>     |             | +                                                |
|          |            |             |                     | Gd-148           | 2.4E-06            | 1.0E-03              |            |          |                                                  |           |                | 2.4E-09            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | H-3              | 1.2E-02            | 1.0E-03              |            |          |                                                  |           |                | 1.2E-05            |                |                   |                | 1          |              |             |                                                  |
|          |            |             |                     | K-40             | 8.0E-06            | 1.0E-03              |            |          |                                                  |           |                | 8.0E-09            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Mn-54            | 4.7E-07            | 1.0E-03              |            |          | ļ'                                               |           |                | 4.7E-10            |                |                   |                |            |              |             |                                                  |
|          |            |             | -                   | Na-22            | 5.7E-08            | 1.0E-03              | +          |          | <del>                                     </del> |           |                | 5.7E-11            |                |                   |                | +          |              | +           | +                                                |
|          |            |             |                     | Nb-95<br>Ni-63   | 2.7E-08<br>2.0E-08 | 1.0E-03<br>1.0E-03   | +          | +        | <del>                                     </del> |           |                | 2.7E-11<br>2.0E-11 |                |                   |                | +          |              | +           | +                                                |
|          |            |             |                     | Np-237           | 2.4E-06            | 1.0E-03<br>1.0E-03   | +          | +        | +                                                |           |                | 2.0E-11<br>2.4E-09 |                |                   |                | +          | +            |             | +                                                |
|          |            |             |                     | Np-237           | 4.8E-08            | 1.0E-03              |            |          |                                                  |           |                | 4.8E-11            |                | $\longrightarrow$ |                |            |              |             | +                                                |
|          |            |             |                     | P-32             | 6.4E-04            | 1.0E-03              |            |          |                                                  |           |                | 6.4E-07            |                |                   |                |            |              |             | +                                                |
|          |            |             |                     | Pb-210           | 2.6E-06            | 1.0E-03              | 1          |          |                                                  |           |                | 2.6E-09            |                |                   |                |            |              |             | 1                                                |
|          |            |             |                     | Po-209           | 2.0E-07            | 1.0E-03              |            |          |                                                  |           |                | 2.0E-10            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Po-210           | 2.0E-07            | 1.0E-03              | 1          |          |                                                  |           |                | 2.0E-10            |                |                   |                | <u> </u>   |              | <u> </u>    |                                                  |
|          |            |             |                     | Pu-238           | 2.8E-06            | 1.0E-03              |            |          |                                                  |           |                | 2.8E-09            |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Pu-239           | 6.0E-05            | 1.0E-03              |            |          | <u> </u>                                         |           |                | 6.0E-08            |                |                   |                |            |              |             | +                                                |
|          |            |             | -                   | Pu-240           | 1.1E-06            | 1.0E-03              | +          | +        |                                                  |           |                | 1.1E-09            |                |                   |                |            |              |             | +                                                |
|          |            |             |                     | Pu-241           | 1.8E-05            | 1.0E-03              | +          | +        | +                                                |           |                | 1.8E-08            | +              |                   |                | +          |              | +           | +                                                |
|          | -          |             |                     | Pu-242<br>Pu-244 | 7.0E-06<br>2.0E-09 | 1.0E-03<br>1.0E-03   | +          | +        | +                                                |           |                | 7.0E-09<br>2.0E-12 | +              | $\longrightarrow$ |                | +          |              | +           | +                                                |
|          |            |             | <u> </u>            | Ra-226           | 2.0E-09<br>2.0E-07 | 1.0E-03              |            |          |                                                  |           |                | 2.0E-12<br>2.0E-10 |                |                   |                |            |              |             | +                                                |
|          |            |             | 1                   | Sb-125           | 7.4E-07            | 1.0E-03              |            |          |                                                  |           |                | 7.4E-10            |                |                   |                |            |              |             | +                                                |
|          |            |             |                     |                  |                    |                      |            |          |                                                  |           |                |                    |                |                   |                |            |              |             |                                                  |
|          |            |             |                     | Sr-90            | 2.0E-04            | 1.0E-03              |            |          | <u> </u>                                         |           |                | 2.0E-07            |                |                   | 1              |            |              |             |                                                  |

| Building      | Room/Area            | Stack ID                      | Operation                              | Radionuclides         | Annual Inventory   | Physical           | Stack         | Stack    | Stack    | Control   | Control Device | Estimated          | 10 mrom/y S | te-Wide Do | se Requirement | 0.1 mrem   | /y Monitoring | Requirement | Source   |
|---------------|----------------------|-------------------------------|----------------------------------------|-----------------------|--------------------|--------------------|---------------|----------|----------|-----------|----------------|--------------------|-------------|------------|----------------|------------|---------------|-------------|----------|
| Juliuling     | 1100III/Alea         | Stack ID                      | Operation                              | riadionaciides        | with Potential for | State              | Height (m)    | Diameter | Velocity | Device(s) | Abatement      | Annual Emissions   | Distance to | Direction  | EDE EDE        | Distance   | Direction     | Unabated    | Category |
|               |                      |                               |                                        |                       | Release (Ci)       | Factor             | rioigni (iii) | (m)      | (m/s)    | Device(e) | Factor         | (Ci)               | SWMEI (m)   | to SWMEI   | (mrem)         | to MEI (m) | to MEI        | EDE (mrem)  |          |
| 514           | Evaporator           | (continued)                   |                                        | Th-228                | 3.0E-08            | 1.0E-03            |               | \ /      | ( ) 2 /  |           |                | 3.0E-11            | - ( /       |            | , ,            | \ /        |               | ,           |          |
|               | ·                    | , ,                           |                                        | Th-229                | 2.4E-06            | 1.0E-03            |               |          |          |           |                | 2.4E-09            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Th-230                | 2.4E-06            | 1.0E-03            |               |          |          |           |                | 2.4E-09            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Th-232                | 7.5E-06            | 1.0E-03            |               |          |          |           |                | 7.5E-09            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | U-232                 | 2.4E-06            | 1.0E-03            |               |          |          |           |                | 2.4E-09            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | U-233                 | 5.2E-06            | 1.0E-03            |               |          |          |           |                | 5.2E-09            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | U-234                 | 1.3E-04            | 1.0E-03            |               |          |          |           |                | 1.3E-07            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | U-235                 | 6.5E-06            | 1.0E-03            |               |          |          |           |                | 6.5E-09            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | U-238                 | 2.3E-04            | 1.0E-03            |               |          |          |           |                | 2.3E-07            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Y-88                  | 1.2E-07            | 1.0E-03            |               |          |          |           |                | 1.2E-10            |             |            |                |            |               |             | +        |
| Ruilding 612  | 2 is operated by the | Hazardous Waste Management F  | Division. It is a facility in which wa | ste is renackaged for | shinment off site  |                    |               |          |          |           |                |                    |             |            |                |            |               |             |          |
| Julianing 012 | 2 to operated by the | Thazaradas Waste Management E | or a lacinty in which wa               | Topaskagea lei        | I on one.          |                    |               |          |          |           |                |                    |             |            |                |            |               |             | +        |
| 612           | 100                  | Room Air                      | Waste sampling                         | Am-241                | 6.3E-08            | 1.0E-06            | NA            | NA       | NA       | None      | 1              | 6.3E-14            | 444         | NNE        | 1.1E-06        | 276        | SW            | 2.3E-06     | 2        |
|               |                      |                               | , J                                    | Am-243                | 5.3E-13            | 1.0E-06            |               |          |          |           |                | 5.3E-19            |             |            |                | -          | _             |             |          |
|               |                      |                               |                                        | Au-195                | 3.1E-12            | 1.0E-06            |               |          |          |           |                | 3.1E-18            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Ba-133                | 1.3E-10            | 1.0E-06            |               |          |          |           |                | 1.3E-16            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Ba-140                | 4.2E-09            | 1.0E-06            |               |          |          |           |                | 4.2E-15            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Be-7                  | 1.8E-09            | 1.0E-06            |               |          |          |           |                | 1.8E-15            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | C-14                  | 1.0E-04            | 1.0E-06            |               |          |          |           |                | 1.0E-10            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Cd-109                | 2.5E-12            | 1.0E-06            |               |          |          |           |                | 2.5E-18            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Ce-141                | 1.6E-08            | 1.0E-06            |               |          |          |           |                | 1.6E-14            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Ce-144                | 1.4E-08            | 1.0E-06            |               |          |          |           |                | 1.4E-14            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Cf-250                | 9.1E-13            | 1.0E-06            |               |          |          |           |                | 9.1E-19            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | CI-36<br>Co-60        | 2.1E-11<br>2.1E-08 | 1.0E-06<br>1.0E-06 |               |          |          |           |                | 2.1E-17<br>2.1E-14 |             |            |                |            |               |             | _        |
|               |                      |                               |                                        | Cr-51                 | 9.1E-10            | 1.0E-06            |               |          |          |           |                | 9.1E-16            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Cs-134                | 2.0E-09            | 1.0E-06            |               |          |          |           |                | 2.0E-15            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Cs-137                | 4.5E-08            | 1.0E-06            |               |          |          |           |                | 4.5E-14            |             |            |                |            |               |             | _        |
|               |                      |                               |                                        | Eu-152                | 9.1E-10            | 1.0E-06            |               |          |          |           |                | 9.1E-16            |             |            |                |            |               |             | -        |
|               |                      |                               |                                        | Eu-154                | 9.1E-10            | 1.0E-06            |               |          |          |           |                | 9.1E-16            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Eu-155                | 9.2E-10            | 1.0E-06            |               |          |          |           |                | 9.2E-16            |             |            |                |            |               |             | +        |
|               |                      |                               |                                        | Fe-55                 | 5.5E-09            | 1.0E-06            |               |          |          |           |                | 5.5E-15            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | H-3                   | 2.3E-03            | 1.0E-06            |               |          |          |           |                | 2.3E-09            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | I-125                 | 5.2E-08            | 1.0E-06            |               |          |          |           |                | 5.2E-14            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | I-131                 | 1.8E-09            | 1.0E-06            |               |          |          |           |                | 1.8E-15            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | K-40                  | 7.7E-10            | 1.0E-06            |               |          |          |           |                | 7.7E-16            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Mn-54                 | 1.2E-10            | 1.0E-06            |               |          |          |           |                | 1.2E-16            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Mo-99                 | 8.9E-10            | 1.0E-06            |               |          |          |           |                | 8.9E-16            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Nb-94                 | 9.1E-10            | 1.0E-06            |               |          |          |           |                | 9.1E-16            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Nb-95                 | 1.4E-08            | 1.0E-06            |               |          |          |           |                | 1.4E-14            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Nd-147                | 9.1E-10            | 1.0E-06            |               |          |          |           |                | 9.1E-16            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Np-237                | 4.0E-15            | 1.0E-06            |               |          |          |           |                | 4.0E-21            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Np-239                | 7.3E-10            | 1.0E-06            |               |          |          |           |                | 7.3E-16            |             |            |                |            |               |             | _        |
|               |                      |                               |                                        | P-32                  | 1.7E-05            | 1.0E-06            |               |          |          |           |                | 1.7E-11            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Pm-147                | 8.2E-11            | 1.0E-06            |               |          |          |           |                | 8.2E-17            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Pm-151                | 2.7E-10<br>5.5E-10 | 1.0E-06<br>1.0E-06 |               |          |          |           |                | 2.7E-16<br>5.5E-16 |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Pt-195m<br>Pu-238     | 4.2E-09            | 1.0E-06            |               |          |          |           |                | 4.2E-15            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Pu-238<br>Pu-239      | 4.2E-09<br>2.5E-08 | 1.0E-06            |               |          | +        |           |                | 4.2E-15<br>2.5E-14 |             |            |                |            |               |             | +        |
|               |                      |                               |                                        | Pu-240                | 1.4E-09            | 1.0E-06            |               |          |          |           |                | 1.4E-15            |             |            |                |            |               |             | +        |
|               |                      |                               |                                        | Pu-241                | 3.3E-08            | 1.0E-06            |               |          | +        |           |                | 3.3E-14            |             |            |                |            |               |             | +        |
|               |                      |                               |                                        | Pu-242                | 2.8E-08            | 1.0E-06            |               |          |          |           |                | 2.8E-14            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Ra-223                | 2.7E-12            | 1.0E-06            |               |          |          |           |                | 2.7E-18            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Ra-226                | 1.3E-12            | 1.0E-06            |               |          |          |           |                | 1.3E-18            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Rh-103                | 9.1E-09            | 1.0E-06            |               |          |          |           |                | 9.1E-15            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Ru-106                | 1.4E-08            | 1.0E-06            |               |          |          |           |                | 1.4E-14            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | S-35                  | 3.9E-06            | 1.0E-06            |               |          |          |           |                | 3.9E-12            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Sb-125                | 4.4E-12            | 1.0E-06            |               |          |          |           |                | 4.4E-18            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Sm-151                | 8.2E-12            | 1.0E-06            |               |          |          |           |                | 8.2E-18            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Sr-90                 | 7.1E-09            | 1.0E-06            |               |          |          |           |                | 7.1E-15            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Th-228                | 7.8E-10            | 1.0E-06            |               |          |          |           |                | 7.8E-16            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Th-230                | 6.8E-10            | 1.0E-06            |               |          |          |           |                | 6.8E-16            |             |            |                |            |               |             |          |
|               |                      |                               |                                        | Th-232                | 1.2E-09            | 1.0E-06            |               |          |          |           |                | 1.2E-15<br>1.8E-15 |             |            |                |            |               |             | +        |
|               |                      |                               |                                        | U-233<br>U-234        | 1.8E-09<br>6.4E-05 | 1.0E-06<br>1.0E-06 |               |          |          |           |                | 1.8E-15<br>6.4E-11 |             |            |                |            |               |             | +        |
|               |                      |                               |                                        | U-234<br>U-235        | 6.4E-05<br>2.8E-06 | 1.0E-06<br>1.0E-06 |               |          |          |           |                | 6.4E-11<br>2.8E-12 |             |            |                |            |               |             |          |
|               |                      |                               |                                        | U-237                 | 1.9E-08            | 1.0E-06            |               |          |          |           |                | 1.9E-14            |             |            |                |            |               |             | +        |
|               |                      |                               |                                        | U-238                 | 6.0E-05            | 1.0E-06            |               |          | +        |           |                | 6.0E-11            |             |            |                |            |               |             | +        |
|               |                      |                               |                                        | Zr-95                 | 3.4E-08            | 1.0E-06            |               |          |          |           |                | 3.4E-14            |             |            |                |            |               |             | +        |
|               |                      |                               |                                        | MFP                   | 2.1E-08            | 1.0E-06            |               |          | +        |           |                | 2.1E-14            |             |            |                |            |               |             | +        |
|               |                      |                               |                                        |                       | 00                 |                    |               |          |          |           | +              |                    |             |            |                |            | +             |             | +        |

| Building | Room/Area | Stack ID | Operation                | Radionuclides    | Annual Inventory   | Physical           | Stack      | Stack    | Stack    | Control   | Control Device | Estimated          | 10 mrem/y S | Site-Wide Do | se Requirement | 0.1 mrem/  | /y Monitoring | Requirement | Source   |
|----------|-----------|----------|--------------------------|------------------|--------------------|--------------------|------------|----------|----------|-----------|----------------|--------------------|-------------|--------------|----------------|------------|---------------|-------------|----------|
| J        |           |          | 2   2   2   2            |                  | with Potential for | State              | Height (m) | Diameter | Velocity | Device(s) | Abatement      | Annual Emissions   |             |              | EDE            | Distance   | Direction     | Unabated    | Category |
|          |           |          |                          |                  | Release (Ci)       | Factor             |            | (m)      | (m/s)    |           | Factor         | (Ci)               | SWMEI (m)   | to SWMEI     | (mrem)         | to MEI (m) | to MEI        | EDE (mrem)  |          |
| 612      | 101       | FHE-4    | Laboratory analysis      | Am-241           | 5.6E-05            | 1.0E-03            | 10.5       | 0.31     | 5.4      | HEPA      | 0.01           | 5.6E-10            | 444         | NE           | 3.7E-06        | 384        | NE            | 3.7E-06     | 1        |
|          |           |          | of waste treatment       | Am-243<br>Ba-133 | 4.2E-06<br>5.0E-06 | 1.0E-03<br>1.0E-03 |            |          |          |           |                | 4.2E-11<br>5.0E-11 |             |              |                |            |               |             |          |
|          |           |          | and treatability samples | Bi-207           | 2.4E-07            | 1.0E-03            |            |          |          |           |                | 2.4E-12            |             |              |                |            |               |             |          |
|          |           |          |                          | Bi-210           | 2.8E-07            | 1.0E-03            |            |          |          |           |                | 2.8E-12            |             |              |                |            |               |             | +        |
|          |           |          |                          | C-14             | 2.8E-04            | 1.0E-03            |            |          |          |           |                | 2.8E-09            |             |              |                |            |               |             |          |
|          |           |          |                          | Cd-109           | 8.4E-10            | 1.0E-03            |            |          |          |           |                | 8.4E-15            |             |              |                |            |               |             |          |
|          |           |          |                          | Ce-139           | 2.8E-13            | 1.0E-03            |            |          |          |           |                | 2.8E-18            |             |              |                |            |               |             |          |
|          |           |          |                          | Ce-144           | 2.8E-05            | 1.0E-03            |            |          |          |           |                | 2.8E-10            |             |              |                |            |               |             |          |
|          |           |          |                          | Cf-249           | 2.8E-07            | 1.0E-03            |            |          |          |           |                | 2.8E-12<br>3.4E-11 |             |              |                |            |               |             |          |
|          |           |          |                          | Cm-244<br>Co-56  | 3.4E-06<br>5.6E-08 | 1.0E-03<br>1.0E-03 |            |          |          |           |                | 5.6E-13            |             |              |                |            |               |             |          |
|          |           |          |                          | Co-56            | 1.5E-06            | 1.0E-03            |            |          |          |           |                | 1.5E-11            |             |              |                |            |               |             | +        |
|          |           |          |                          | Co-60            | 8.8E-07            | 1.0E-03            |            |          |          |           |                | 8.8E-12            |             |              |                |            |               |             |          |
|          |           |          |                          | Cs-134           | 3.4E-06            | 1.0E-03            |            |          |          |           |                | 3.4E-11            |             |              |                |            |               |             |          |
|          |           |          |                          | Cs-137           | 1.4E-04            | 1.0E-03            |            |          |          |           |                | 1.4E-09            |             |              |                |            |               |             |          |
|          |           |          |                          | Eu-152           | 1.4E-05            | 1.0E-03            |            |          |          |           |                | 1.4E-10            |             |              |                |            |               |             |          |
|          |           |          |                          | Eu-154           | 1.4E-05            | 1.0E-03            |            |          |          |           |                | 1.4E-10            |             |              |                |            |               |             |          |
|          |           |          |                          | Eu-155           | 1.0E-06            | 1.0E-03            |            |          |          |           |                | 1.0E-11            |             | 1            |                | -          |               |             | +        |
|          |           |          |                          | Gd-148<br>H-3    | 3.4E-06<br>7.8E-04 | 1.0E-03<br>1.0E-03 |            |          |          |           |                | 3.4E-11<br>7.8E-09 |             |              |                | +          |               |             |          |
|          |           |          |                          | K-40             | 7.8E-04<br>1.1E-05 | 1.0E-03<br>1.0E-03 |            |          |          |           |                | 7.8E-09<br>1.1E-10 |             |              |                | +          |               |             | +        |
|          |           |          |                          | Mn-54            | 6.5E-07            | 1.0E-03            |            |          |          |           |                | 6.5E-12            |             | 1            |                |            |               |             | +        |
|          |           |          |                          | Na-22            | 8.0E-08            | 1.0E-03            |            |          | 1        |           |                | 8.0E-13            |             |              |                |            |               |             | 1        |
|          |           |          |                          | Nb-95            | 3.8E-08            | 1.0E-03            |            |          |          |           |                | 3.8E-13            |             |              |                |            |               |             |          |
|          |           |          |                          | Ni-63            | 2.8E-08            | 1.0E-03            |            |          |          |           |                | 2.8E-13            |             |              |                |            |               |             |          |
|          |           |          |                          | Np-237           | 3.4E-06            | 1.0E-03            |            |          |          |           |                | 3.4E-11            |             |              |                |            |               |             |          |
|          |           |          |                          | Np-239           | 6.7E-08            | 1.0E-03            |            |          |          |           |                | 6.7E-13            |             |              |                |            |               |             |          |
|          |           |          |                          | P-32             | 1.7E-05            | 1.0E-03            |            |          |          |           |                | 1.7E-10<br>3.6E-11 |             |              |                |            |               |             |          |
|          |           |          |                          | Pb-210<br>Po-209 | 3.6E-06<br>2.8E-07 | 1.0E-03<br>1.0E-03 |            |          |          |           |                | 2.8E-12            |             |              |                | -          |               |             |          |
|          |           |          |                          | Po-210           | 2.8E-07            | 1.0E-03            |            |          |          |           |                | 2.8E-12            |             |              |                |            |               |             |          |
|          |           |          |                          | Pu-238           | 3.8E-06            | 1.0E-03            |            |          |          |           |                | 3.8E-11            |             |              |                |            |               |             | +        |
|          |           |          |                          | Pu-239           | 8.4E-05            | 1.0E-03            |            |          |          |           |                | 8.4E-10            |             |              |                |            |               |             |          |
|          |           |          |                          | Pu-241           | 1.0E-05            | 1.0E-03            |            |          |          |           |                | 1.0E-10            |             |              |                |            |               |             |          |
|          |           |          |                          | Pu-242           | 9.9E-06            | 1.0E-03            |            |          |          |           |                | 9.9E-11            |             |              |                |            |               |             |          |
|          |           |          |                          | Pu-244           | 2.8E-09            | 1.0E-03            |            |          |          |           |                | 2.8E-14            |             |              |                |            |               |             |          |
|          |           |          |                          | Ra-226           | 2.9E-07            | 1.0E-03            |            |          |          |           |                | 2.9E-12            |             |              |                |            |               |             |          |
|          |           |          |                          | Sb-125<br>Sr-90  | 1.0E-06<br>2.8E-04 | 1.0E-03<br>1.0E-03 |            |          |          |           |                | 1.0E-11<br>2.8E-09 |             |              |                | -          |               |             |          |
|          |           |          |                          | Tc-99            | 3.4E-06            | 1.0E-03            |            |          |          |           |                | 3.4E-11            |             |              |                |            |               |             | -        |
|          |           |          |                          | Th-228           | 4.2E-08            | 1.0E-03            |            |          |          |           |                | 4.2E-13            |             |              |                |            |               |             |          |
|          |           |          |                          | Th-229           | 3.4E-06            | 1.0E-03            |            |          |          |           |                | 3.4E-11            |             |              |                |            |               |             |          |
|          |           |          |                          | Th-230           | 3.4E-06            | 1.0E-03            |            |          |          |           |                | 3.4E-11            |             |              |                |            |               |             |          |
|          |           |          |                          | Th-232           | 3.4E-06            | 1.0E-03            |            |          |          |           |                | 3.4E-11            |             |              |                |            |               |             |          |
|          |           |          |                          | U-232            | 3.4E-06            | 1.0E-03            |            |          |          |           |                | 3.4E-11            |             |              |                |            |               |             |          |
|          |           |          |                          | U-233            | 7.3E-06            | 1.0E-03            |            |          |          |           |                | 7.3E-11            |             |              |                |            |               |             |          |
|          |           |          |                          | U-234<br>U-235   | 5.4E-05<br>3.5E-06 | 1.0E-03<br>1.0E-03 |            |          |          |           |                | 5.4E-10<br>3.5E-11 |             |              |                |            |               |             |          |
|          |           |          |                          | U-238            | 2.0E-04            | 1.0E-03            |            |          |          |           |                | 2.0E-09            |             |              |                |            |               |             |          |
|          |           |          |                          | Y-88             | 1.6E-07            | 1.0E-03            |            |          |          |           |                | 1.6E-12            |             |              |                |            |               |             | +        |
|          |           |          |                          |                  |                    |                    |            |          |          |           |                |                    |             |              |                |            |               |             |          |
| 612      | 102       | Room Air | Laboratory analysis      | Am-241           | 5.6E-05            | 1.0E-03            | NA         | NA       | NA       | None      | 1              | 5.6E-08            | 444         | NE           | 6.2E-04        | 295        | ENE           | 9.4E-04     | 1        |
|          |           |          | of waste treatment       | Am-243           | 4.2E-06            | 1.0E-03            |            |          |          |           |                | 4.2E-09            |             |              |                |            |               |             |          |
|          |           |          | and treatability samples | Ba-133           | 5.0E-06            | 1.0E-03            |            |          | 1        |           |                | 5.0E-09            |             |              |                |            |               |             |          |
|          |           |          |                          | Bi-207<br>Bi-210 | 2.4E-07<br>2.8E-07 | 1.0E-03<br>1.0E-03 |            |          |          |           |                | 2.4E-10<br>2.8E-10 |             |              |                | -          |               |             | +        |
|          |           |          | 1                        | C-14             | 2.8E-07<br>2.8E-04 | 1.0E-03<br>1.0E-03 |            |          | 1        |           |                | 2.8E-10<br>2.8E-07 |             |              |                | +          |               |             | +        |
|          |           |          |                          | Cd-109           | 8.4E-10            | 1.0E-03            |            |          | 1        |           |                | 8.4E-13            |             | +            |                |            |               |             | +        |
|          |           |          |                          | Ce-139           | 2.8E-13            | 1.0E-03            |            |          |          |           |                | 2.8E-16            |             |              |                |            |               |             |          |
|          |           |          |                          | Ce-144           | 2.8E-05            | 1.0E-03            |            |          |          |           |                | 2.8E-08            |             |              |                |            |               |             |          |
|          |           |          |                          | Cf-249           | 2.8E-07            | 1.0E-03            |            |          |          |           |                | 2.8E-10            |             |              |                |            |               | ·           |          |
|          |           |          |                          | Cm-244           | 3.4E-06            | 1.0E-03            |            |          |          |           |                | 3.4E-09            | 1           |              |                | 1          |               |             |          |
|          |           |          |                          | Co-56            | 5.6E-08            | 1.0E-03            |            |          | 1        |           |                | 5.6E-11            |             |              |                | -          |               |             | +        |
|          |           |          |                          | Co-57<br>Co-60   | 1.5E-06<br>8.8E-07 | 1.0E-03<br>1.0E-03 |            |          | 1        |           |                | 1.5E-09<br>8.8E-10 |             |              |                | +          |               |             | +        |
|          |           |          | +                        | Co-60<br>Cs-134  | 8.8E-07<br>3.4E-06 | 1.0E-03<br>1.0E-03 |            |          | 1        |           |                | 8.8E-10<br>3.4E-09 | 1           |              |                | +          |               |             | +        |
|          |           |          |                          | Cs-134<br>Cs-137 | 1.4E-04            | 1.0E-03            |            |          | 1        |           |                | 1.4E-07            |             |              |                | +          |               |             | +        |
|          |           |          |                          | Eu-152           | 1.4E-05            | 1.0E-03            |            |          |          |           |                | 1.4E-08            |             |              |                |            |               |             | +        |
|          |           |          |                          | Eu-154           | 1.4E-05            | 1.0E-03            |            |          |          |           |                | 1.4E-08            |             |              |                |            |               |             |          |
|          |           |          |                          | Eu-155           | 1.0E-06            | 1.0E-03            |            |          |          |           |                | 1.0E-09            |             |              |                |            |               |             |          |
|          |           |          |                          | Gd-148           | 3.4E-06            | 1.0E-03            |            |          |          |           |                | 3.4E-09            |             |              |                |            |               |             |          |
|          |           |          |                          | H-3              | 7.8E-04            | 1.0E-03            | 1          |          | -        |           |                | 7.8E-07            | 1           |              |                |            |               |             | +        |
|          |           |          |                          | K-40             | 1.1E-05            | 1.0E-03            | 1          |          |          |           |                | 1.1E-08            |             |              |                | 1          |               |             |          |

| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Building    | Room/Area            | Stack ID                          | Operation                               | Radionuclides       | Annual Inventory     | Physical           | Stack             | Stack             | Stack            | Control              | Control Device     | Estimated        |           |          | se Requirement | 0.1 mrem/  | y Monitoring | Requirement | Source      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|-----------------------------------|-----------------------------------------|---------------------|----------------------|--------------------|-------------------|-------------------|------------------|----------------------|--------------------|------------------|-----------|----------|----------------|------------|--------------|-------------|-------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                      |                                   |                                         |                     | with Potential for   | State              | Height (m)        | Diameter          | <del></del>      | Device(s)            | _                  | Annual Emissions |           |          |                |            |              |             | Category    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         |                     |                      |                    |                   | (m)               | (m/s)            |                      | Factor             |                  | SWMEI (m) | to SWMEI | (mrem)         | to MEI (m) | to MEI       | EDE (mrem)  | <u> </u>    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 612         | 102                  | (continued)                       |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | <u> </u>    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | <del></del> |
| No.   No.  |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | +           |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | <u> </u>    |
| March   Marc |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | +           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | +           |
| No.   Profession   Profession |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | +           |
| March   Marc |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         | Pu-242              | 9.9E-06              | 1.0E-03            |                   |                   |                  |                      |                    | 9.9E-09          |           |          |                |            |              |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         | Pu-244              | 2.8E-09              | 1.0E-03            |                   |                   |                  |                      |                    | 2.8E-12          |           |          |                |            |              |             |             |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         |                     |                      |                    | 1                 | 1                 |                  |                      |                    |                  | 1         |          |                | 1          |              |             |             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  | 1         |          |                |            |              |             | +           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -           |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  | +         |          |                | 1          |              |             | +           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         |                     |                      |                    | 1                 |                   |                  |                      |                    |                  | +         |          |                |            |              |             | +           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | +           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  | 1         |          |                |            |              |             |             |
| Methods   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00 |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | 1           |
| Mary    |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| PE   Wash inspection and regardalysing   N-3   2.5E-0.8   11.0E-0.8   1.0E-0.8   1.0E- |             |                      |                                   |                                         | Y-88                | 1.6E-07              | 1.0E-03            |                   |                   |                  |                      |                    | 1.6E-10          |           |          |                |            |              |             |             |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Building 6  | 25 is operated by H  | lazardous Waste Management.       |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 625         | Repack Tent          | RHE .                             | Waste inspection and repackaging        | H-3                 | 2.5E-08              | 1.0E-06            | 1.5               | 0.31              | 6.9              | HEPA                 | 0.01               | 2.5E-16          | 355       | NE       | 1.1E-12        | 289        | ENE          | 1.1E-10     | 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         | K-40                | 2.2E-09              | 1.0E-06            |                   |                   |                  |                      |                    | 2.2E-17          |           |          |                |            |              |             |             |
| Second Sources   Seco |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| ACC 144 8.65-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| Am-241   2.2E-08   1.0E-08   1.0E- |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| Control   Cont |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| Cm 943   3.4E-11   10E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| Character   Char |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| Second   S |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | +           |
| Co-00   39E-10   1.0E-00   1.0E-00 |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| STE SOF POINT SOURCES    Pu-239   5.6E-11   1.0E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | +           |
| Second   Function    |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | +           |
| SITE 30 POINT SURCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| No.   Propose   Propose  |             |                      |                                   |                                         | . 4 200             | 0.02                 |                    |                   |                   |                  |                      |                    | 0.02 .0          |           |          |                |            |              |             |             |
| No.   Propose   Propose  |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| Note   Control   Note   Control   Note   Control   Note   Control   Note   No | SITE 300 F  | POINT SOURCES        |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             | -           |
| Name    | Site 300 -  | Explosives tests in  | which radionuclides may be pre-   | sent are conducted on open-air firing t | ables located at Bu | nkers 801 and 851. T | L<br>hese tests ha | uve depleted urar | ium material as p | art of the mater | ial inventory. There | are multiple tests | Der year.        |           |          |                |            |              |             |             |
| 121   test devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Air activat | ion products are cre | eated at the flash x-ray and LINA | C                                       |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
| 121   test devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                      |                                   |                                         |                     |                      |                    | 1                 | 1                 |                  |                      |                    |                  |           |          |                | 1          |              |             | <del></del> |
| 133   138   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139   139  | 810A        |                      | Room Air                          |                                         |                     |                      |                    | NA NA             | NA NA             | NA               | None                 | 1                  |                  | 2360      | WSW      | 2.8E-07        | 944        | SSE          | 6.7E-06     |             |
| 810B 100 Rom Air Assembly of explosives U-238 1.6E-02 1.0E-06 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                      |                                   | test devices                            |                     |                      |                    | 1                 | 1                 | 1                |                      |                    |                  | +         |          |                | 1          |              |             | +           |
| Test devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | 133                  |                                   |                                         | U-234               | 5.0⊑-03              | 1.0⊑-06            | 1                 | 1                 |                  |                      |                    | 5.0⊑-09          | +         |          |                | 1          |              |             | +           |
| Test devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 910B        | 100                  | Room Air                          | Assambly of explosives                  | 11-238              | 1 6E-02              | 1.0E-06            | NA                | NA                | NA               | None                 | 1                  | 1.65-08          | 2410      | 14/6/14  | 7 9E-09        | 907        | SGE.         | 2 1E-06     | 2           |
| Note   Control   Note   Note   Control   Note   Note   Control   Note   Control   Note    | 0100        | 100                  | HOOH AII                          |                                         |                     |                      |                    | INA               | INA               | INA              | INUITE               | '                  |                  | 2410      | VVOVV    | 7.0E-00        | 307        | - WE         | 2.16-00     |             |
| 801 125 FE-4 Flash X-ray (FXR) N-13 3.4E-03 1.0E+00 NA NA NA NA NONE 1 3.4E-03 4114 S 1.8E-08 1809 ENE 3.6E-07 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                      |                                   | 1001 3041000                            |                     |                      |                    |                   |                   |                  |                      |                    |                  | 1         |          |                |            |              |             |             |
| Ar-41   2.0E-07   1.0E+00     2.0E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                      |                                   |                                         |                     | 1                    |                    |                   |                   |                  |                      |                    |                  |           |          |                | 1          |              |             |             |
| None   Linear accelerator   N-13   8.2E-02   1.0E+00   NA   NA   NA   None   1   8.2E-02   3170   SSE   1.6E-06   3836   ENE   2.1E-06   2   2.1E-06   2.1 | 801         | 125                  | FE-4                              | Flash X-ray (FXR)                       |                     |                      |                    | NA                | NA                | NA               | None                 | 1                  |                  | 4114      | S        | 1.8E-08        | 1809       | ENE          | 3.6E-07     | 2           |
| None   Linear accelerator   N-13   8.2E-02   1.0E+00   NA   NA   NA   None   1   8.2E-02   3170   SSE   1.6E-06   3836   ENE   2.1E-06   2   2.1E-06   2.1 | 051         | Fining T 11          | N.                                | Familia 2                               | 11.000              | 0.05.00              | 1.05.00            | , na              | h.a.              | N: 0             | N.                   |                    | 0.05.00          | 0170      |          | 5.05.00        | 1000       | 14/014/      | 5.75.00     | + .         |
| U-234   5.8E-03   1.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 851         | Firing Table         | None                              | Explosive tests                         |                     |                      |                    | NA NA             | NA NA             | NA NA            | None                 | 1                  |                  | 31/0      | SSE      | 5.0E-02        | 1396       | WSW          | 5./E-02     | 4           |
| 851 111 None Linear accelerator N-13 8.2E-02 1.0E+00 NA NA NA NONE 1 8.2E-02 3170 SSE 1.6E-06 3836 ENE 2.1E-06 2 O-15 7.6E-02 1.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  | +         |          |                | 1          |              |             | +           |
| O-15 7.6E-02 1.0E+00 7.6E-02 7.6E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                      |                                   |                                         | 0-234               | J.UL-U3              | 1.02+00            |                   |                   |                  |                      |                    | J.UL-U3          | 1         |          |                |            |              |             | +           |
| O-15 7.6E-02 1.0E+00 7.6E-02 7.6E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 851         | 111                  | None                              | Linear accelerator                      | N-13                | 8.2E-02              | 1.0E+00            | NA                | NA                | NA               | None                 | 1                  | 8.2E-02          | 3170      | SSE      | 1.6E-06        | 3836       | ENE          | 2.1E-06     | 2           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 1                    | 1.56                              |                                         |                     |                      |                    |                   | 1                 |                  | 1.00                 | 1                  |                  | 1         |          |                | 1 200      |              |             | T-          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                      |                                   |                                         |                     |                      |                    |                   |                   |                  |                      |                    |                  |           |          |                |            |              |             |             |

| Building          | Room/Area           | Stack ID                             | Operation                                                                        | Radionuclides         | Annual Inventory           | Physical           | Stack               | Stack             | Stack             | Control          | Control Device      | Estimated          | 10 mrem/y S | te-Wide Dos | se Requirement | 0.1 mrem/  | y Monitoring | Requirement | Source  |
|-------------------|---------------------|--------------------------------------|----------------------------------------------------------------------------------|-----------------------|----------------------------|--------------------|---------------------|-------------------|-------------------|------------------|---------------------|--------------------|-------------|-------------|----------------|------------|--------------|-------------|---------|
|                   |                     |                                      |                                                                                  |                       | with Potential for         | State              | Height (m)          | Diameter          | Velocity          | Device(s)        | Abatement           | Annual Emissions   | Distance to | Direction   | EDE            | Distance   | Direction    | Unabated    | Categor |
|                   |                     |                                      |                                                                                  |                       | Release (Ci)               | Factor             | ,                   | (m)               | (m/s)             | ,                | Factor              | (Ci)               | SWMEI (m)   | to SWMEI    | (mrem)         | to MEI (m) | to MEI       | EDE (mrem)  |         |
| IVERMORE          | SITE DIFFUSE SOL    | JRCES                                |                                                                                  |                       |                            |                    |                     |                   |                   |                  |                     |                    |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  |                       |                            |                    |                     |                   |                   |                  |                     |                    |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  |                       |                            |                    |                     |                   |                   |                  |                     |                    |             |             |                |            |              |             |         |
| uilding 292       | 2 - Diffuse emissio | ons result from tritium-contaminate  | ed water which leaked from an under                                              | rground storage tank  | . Vegetation in the a      | rea transpires     | water with eleva    | ated tritium conc | entrations.       |                  |                     |                    |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  |                       |                            |                    |                     |                   |                   |                  |                     |                    |             |             |                |            |              |             |         |
| 292               | Spill Area          | None                                 | Evaporation and transpiration                                                    | H-3                   | NA                         | 1                  | NA                  | NA                | NA                | None             | 1                   | 4.9E-04            | 1380        | ESE         | 7.2E-08        | 456        | N            | 1.8E-06     | 6       |
| ):I.eli.e. e. 00: | 4 A + - + D0D       |                                      |                                                                                  |                       |                            |                    |                     |                   |                   |                  |                     |                    |             |             |                | 655        | W            | 1.8E-06     |         |
|                   |                     |                                      | ment outside the facility is awaiting tra<br>T model; see discussion on page pp. |                       | by Hazardous Waste         | Management         |                     |                   |                   |                  |                     |                    |             |             |                |            |              |             |         |
|                   | Outside             | None                                 | Storage of contaminated parts                                                    | H-3                   | NA NA                      | 1                  | NA                  | NA                | NA                | None             | 1                   | 1.0E+00            | 957         | ENE         | 8.0E-04        | 441        | SSW          | 2.2E-03     | 6       |
| 331               | Outside             | None                                 | Storage of contaminated parts                                                    | п-э                   | INA                        | <u>'</u>           | INA                 | INA               | INA               | none             | ı                   | 1.0E+00            | 957         |             | ***6.0E-04     | 441        | 3300         | ***1.6E-02  | - 6     |
|                   |                     |                                      |                                                                                  |                       |                            |                    |                     |                   |                   |                  |                     |                    |             |             | 0.0⊑-04        |            |              | 1.0E-02     |         |
| uilding 514       | 1 is onerated by th | ne Hazardous Waste Managemen         | t Division. The wastewater treatmen                                              | t tank farm and stora | l<br>age tank area process | es the liquid      | vaste from faciliti | es on site. The   | treatment process | may involve hatc | chemical treatmen   | l<br>nt            |             |             |                |            |              |             |         |
|                   |                     |                                      | recipitation, separation, and filtration.                                        |                       |                            |                    |                     |                   |                   |                  | T Onomical troutino |                    |             |             |                |            |              |             |         |
| Ji lolotii ig o   | Troutianzadori, no  | podulation, oxidation, roduction, pr |                                                                                  | 7.11000 0000 101 0101 |                            |                    | adional according   | Tages and mades   |                   |                  |                     |                    |             |             |                |            |              |             |         |
| 514               | Tank Farm           | Area Source                          | Process liquid hazardous                                                         | Am-241                | 1.5E-04                    | 1.0E-03            | NA                  | NA                | NA                | None             | 1                   | 1.5E-07            | 528         | NE          | 1.3E-03        | 217        | SW           | 3.0E-03     | 5       |
|                   |                     |                                      | mixed and radioactive wastes in                                                  | Am-243                | 1.2E-05                    | 1.0E-03            |                     |                   |                   |                  |                     | 1.2E-08            |             |             |                |            |              |             |         |
|                   |                     |                                      | open topped tanks.                                                               | Ba-133                | 1.4E-05                    | 1.0E-03            |                     |                   |                   |                  |                     | 1.4E-08            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Bi-207                | 6.5E-07                    | 1.0E-03            |                     |                   |                   |                  |                     | 6.5E-10            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Bi-210                | 7.6E-07                    | 1.0E-03            |                     |                   |                   |                  |                     | 7.6E-10            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | C-14                  | 7.6E-04                    | 1.0E-03            |                     |                   |                   |                  |                     | 7.6E-07            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Cd-109                | 2.3E-09                    | 1.0E-03            |                     |                   |                   |                  |                     | 2.3E-12            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Ce-139                | 7.6E-13                    | 1.0E-03            |                     |                   |                   |                  |                     | 7.6E-16            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Ce-144                | 7.6E-05                    | 1.0E-03            |                     |                   |                   |                  |                     | 7.6E-08            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Cf-249                | 7.6E-07                    | 1.0E-03            |                     |                   |                   |                  |                     | 7.6E-10            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Cm-244                | 9.1E-06                    | 1.0E-03            |                     |                   |                   |                  |                     | 9.1E-09            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Co-56                 | 1.5E-07                    | 1.0E-03            |                     |                   |                   |                  |                     | 1.5E-10            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Co-57                 | 4.1E-06                    | 1.0E-03            |                     |                   |                   |                  |                     | 4.1E-09            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Co-60                 | 2.4E-06                    | 1.0E-03            |                     |                   |                   |                  |                     | 2.4E-09            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Cs-134                | 9.1E-06                    | 1.0E-03            |                     |                   |                   |                  |                     | 9.1E-09            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Cs-137                | 3.8E-04                    | 1.0E-03            |                     |                   |                   |                  |                     | 3.8E-07            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Eu-152                | 3.7E-05                    | 1.0E-03            |                     |                   |                   |                  |                     | 3.7E-08            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Eu-154                | 3.7E-05                    | 1.0E-03            |                     |                   |                   |                  |                     | 3.7E-08            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Eu-155                | 2.8E-06                    | 1.0E-03            |                     |                   |                   |                  |                     | 2.8E-09            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Gd-148<br>H-3         | 9.1E-06<br>2.1E-03         | 1.0E-03<br>1.0E-03 |                     |                   |                   |                  |                     | 9.1E-09<br>2.1E-06 |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | K-40                  | 3.0E-05                    | 1.0E-03            |                     |                   |                   |                  |                     | 3.0E-08            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Mn-54                 | 1.8E-06                    | 1.0E-03            |                     |                   |                   |                  |                     | 1.8E-09            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Na-22                 | 2.2E-07                    | 1.0E-03            |                     |                   |                   |                  |                     | 2.2E-10            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Nb-95                 | 1.0E-07                    | 1.0E-03            |                     |                   |                   |                  |                     | 1.0E-10            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Ni-63                 | 7.6E-08                    | 1.0E-03            |                     |                   |                   |                  |                     | 7.6E-11            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Np-237                | 9.1E-06                    | 1.0E-03            |                     |                   |                   |                  |                     | 9.1E-09            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Np-239                | 1.8E-07                    | 1.0E-03            |                     |                   |                   |                  |                     | 1.8E-10            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | P-32                  | 4.6E-05                    | 1.0E-03            |                     |                   |                   |                  |                     | 4.6E-08            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Pb-210                | 9.9E-06                    | 1.0E-03            |                     |                   |                   |                  |                     | 9.9E-09            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Po-209                | 7.6E-07                    | 1.0E-03            |                     |                   |                   |                  |                     | 7.6E-10            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Po-210                | 7.6E-07                    | 1.0E-03            |                     |                   |                   |                  |                     | 7.6E-10            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Pu-238                | 1.0E-05                    | 1.0E-03            |                     |                   |                   |                  |                     | 1.0E-08            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Pu-239                | 2.3E-04                    | 1.0E-03            |                     |                   |                   |                  |                     | 2.3E-07            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Pu-241                | 2.7E-05                    | 1.0E-03            |                     |                   |                   |                  |                     | 2.7E-08            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Pu-242                | 2.7E-05                    | 1.0E-03            |                     |                   |                   |                  |                     | 2.7E-08            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Pu-244                | 7.6E-09                    | 1.0E-03            |                     |                   |                   |                  |                     | 7.6E-12            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Ra-226                | 7.8E-07                    | 1.0E-03            |                     |                   |                   |                  |                     | 7.8E-10            |             |             |                | -          |              |             |         |
|                   |                     |                                      |                                                                                  | Sb-125                | 2.8E-06                    | 1.0E-03            |                     |                   |                   |                  |                     | 2.8E-09            |             |             |                |            |              |             | 1       |
|                   |                     |                                      |                                                                                  | Sr-90                 | 7.6E-04                    | 1.0E-03            |                     |                   |                   |                  |                     | 7.6E-07            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Tc-99                 | 9.2E-06                    | 1.0E-03            |                     |                   | 1                 |                  |                     | 9.2E-09            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Th-228                | 1.1E-07                    | 1.0E-03            |                     |                   |                   |                  |                     | 1.1E-10            |             |             |                |            |              |             | -       |
|                   |                     |                                      |                                                                                  | Th-229                | 9.1E-06                    | 1.0E-03            |                     |                   |                   |                  |                     | 9.1E-09            |             |             |                | -          |              |             |         |
|                   |                     |                                      |                                                                                  | Th-230                | 9.1E-06                    | 1.0E-03            |                     |                   | +                 |                  |                     | 9.1E-09            |             |             |                |            |              |             | +       |
|                   |                     |                                      |                                                                                  | Th-232<br>U-232       | 9.1E-06<br>9.1E-06         | 1.0E-03<br>1.0E-03 |                     |                   | +                 |                  |                     | 9.1E-09<br>9.1E-09 |             |             |                | -          |              |             | +       |
| -                 |                     |                                      |                                                                                  | U-232                 | 9.1E-06<br>2.0E-05         | 1.0E-03<br>1.0E-03 |                     |                   | +                 |                  |                     | 9.1E-09<br>2.0E-08 |             |             |                | -          |              |             | -       |
|                   |                     |                                      |                                                                                  | U-234                 | 1.5E-04                    | 1.0E-03<br>1.0E-03 |                     |                   | +                 |                  |                     | 1.5E-07            |             |             |                |            |              |             | +       |
|                   |                     |                                      |                                                                                  | U-235                 | 9.5E-06                    | 1.0E-03            |                     |                   | +                 |                  |                     | 9.5E-09            |             |             |                |            |              |             | +       |
|                   |                     |                                      |                                                                                  | U-238                 | 9.5E-06<br>5.3E-04         | 1.0E-03<br>1.0E-03 |                     |                   | +                 |                  |                     | 9.5E-09<br>5.3E-07 |             |             |                |            |              |             | +       |
|                   |                     |                                      | 1                                                                                |                       |                            |                    |                     |                   |                   |                  |                     |                    |             |             |                | -          |              |             | -       |
|                   |                     |                                      |                                                                                  | Y-88                  | 4 4F-07                    | 1 0F-03            |                     |                   |                   |                  |                     | 4 41-10            |             |             |                |            |              |             |         |
|                   |                     |                                      |                                                                                  | Y-88                  | 4.4E-07                    | 1.0E-03            |                     |                   |                   |                  |                     | 4.4E-10            |             |             |                |            |              |             | -       |

| Building | Room/Area | Stack ID    | Operation                             | Radionuclides    | Annual Inventory   | Physical           | Stack              | Stack    | Stack             | Control                  | Control Device     | Estimated          | 10 mrem/y | Site-Wide Do | se Requirement | 0.1 mrem/  | v Monitoring | Requirement | Source   |
|----------|-----------|-------------|---------------------------------------|------------------|--------------------|--------------------|--------------------|----------|-------------------|--------------------------|--------------------|--------------------|-----------|--------------|----------------|------------|--------------|-------------|----------|
|          |           |             |                                       |                  | with Potential for | State              | Height (m)         | Diameter | Velocity          | Device(s)                | Abatement          | Annual Emissions   |           | Direction    | EDE            | Distance   | Direction    | Unabated    | Category |
|          |           |             |                                       |                  | Release (Ci)       | Factor             |                    | (m)      | (m/s)             | , ,                      | Factor             | (Ci)               | SWMEI (m) | to SWMEI     | (mrem)         | to MEI (m) | to MEI       | EDE (mrem)  |          |
|          |           |             | lanagement Division. The Yard consist |                  |                    |                    |                    |          | containers, which | ch are not air tight, ca | an outgas tritium. |                    |           |              |                |            |              |             |          |
|          |           |             | ccumulation Areas. Inventories were c |                  |                    | occurred at the    | ne center of the s | ite.     |                   |                          |                    |                    |           |              |                |            |              |             |          |
|          |           |             | e NEWTRIT model is 1.1e-02. See dis   |                  |                    |                    |                    |          |                   |                          |                    |                    |           |              |                |            |              |             |          |
| 612      | Yard      | Area Source | Storage of low level waste            | H-3              | NA                 | NA                 | NA                 | NA       | NA                | None                     | 1                  | 2.0E+00            | 444       | NNE          | 8.2E-03        | 212        | SSW          | 1.6E-02     | 6        |
|          |           |             |                                       |                  |                    |                    |                    |          |                   |                          |                    |                    |           | ***6.2E-03   |                |            |              |             |          |
|          |           |             |                                       |                  |                    |                    |                    |          |                   |                          |                    |                    |           |              |                |            |              |             | +        |
| 612      | All WAAs* | Area source | Drum sampling in                      | Am-241           | 4.1E-10            | 1.0E-03            | NA                 | NA       | NA                | None                     | 1                  | 4.1E-13            | 951       | ESE          | 8.5E-09        | 969        | W            | 5.1E-08     | 5        |
|          |           |             | 612 yard and all LLNL Waste           | Am-243           | 1.5E-11            | 1.0E-03            |                    |          |                   |                          |                    | 1.5E-14            |           |              | 0.0 = 0.0      |            |              | 0           |          |
|          |           |             | Accumulation Areas (WAAs)             | Bi-207           | 8.5E-13            | 1.0E-03            |                    |          |                   |                          |                    | 8.5E-16            |           |              |                |            |              |             |          |
|          |           |             |                                       | C-14             | 1.2E-09            | 1.0E-03            |                    |          |                   |                          |                    | 1.2E-12            |           |              |                |            |              |             |          |
|          |           |             |                                       | Ce-144           | 1.2E-10            | 1.0E-03            |                    |          |                   |                          |                    | 1.2E-13            |           |              |                |            |              |             |          |
|          |           |             |                                       | Co-57            | 2.4E-12            | 1.0E-03            |                    |          |                   |                          |                    | 2.4E-15            |           |              |                |            |              |             |          |
|          |           |             |                                       | Co-60<br>Cs-134  | 6.8E-12<br>4.8E-11 | 1.0E-03<br>1.0E-03 |                    |          |                   |                          |                    | 6.8E-15<br>4.8E-14 | -         |              |                |            |              |             | +        |
|          |           |             |                                       | Cs-134<br>Cs-137 | 3.0E-10            | 1.0E-03            |                    |          |                   |                          |                    | 3.0E-13            |           |              |                |            |              |             | +        |
|          |           |             |                                       | Eu-152           | 4.9E-11            | 1.0E-03            |                    |          |                   |                          |                    | 4.9E-14            |           |              |                |            |              |             |          |
|          |           |             |                                       | Eu-154           | 4.9E-11            | 1.0E-03            |                    |          |                   |                          |                    | 4.9E-14            |           |              |                |            |              |             |          |
|          |           |             |                                       | Eu-155           | 3.6E-12            | 1.0E-03            |                    |          |                   |                          |                    | 3.6E-15            |           |              |                |            |              |             |          |
|          |           |             |                                       | H-3              | 1.0E-05            | 1.0E-03            |                    |          |                   |                          |                    | 1.0E-08            |           |              |                |            |              |             |          |
|          |           |             |                                       | K-40             | 3.3E-11            | 1.0E-03            |                    |          |                   |                          |                    | 3.3E-14            |           |              |                |            |              |             |          |
|          |           |             |                                       | Mn-54            | 2.3E-12            | 1.0E-03            |                    |          |                   |                          | 1                  | 2.3E-15            |           |              |                |            |              |             |          |
|          |           |             |                                       | Nb-95            | 1.2E-12            | 1.0E-03            |                    |          | -                 |                          |                    | 1.2E-15            | -         |              |                |            |              |             |          |
|          |           |             |                                       | Ni-63<br>Np-239  | 9.5E-11<br>2.5E-12 | 1.0E-03<br>1.0E-03 |                    |          |                   |                          |                    | 9.5E-14<br>2.5E-15 | -         |              |                |            |              |             | +        |
|          |           |             |                                       | Np-239<br>P-32   | 2.5E-12<br>7.4E-07 | 1.0E-03<br>1.0E-03 | +                  |          | +                 |                          |                    | 7.4E-10            |           |              |                |            |              |             | +        |
|          |           |             | 1                                     | Pu-238           | 1.1E-12            | 1.0E-03            |                    |          |                   |                          |                    | 1.1E-15            |           |              |                |            |              |             | +        |
|          |           |             |                                       | Pu-239           | 1.4E-10            | 1.0E-03            |                    |          |                   |                          |                    | 1.4E-13            |           |              |                |            |              |             |          |
|          |           |             |                                       | Pu-240           | 9.5E-12            | 1.0E-03            |                    |          |                   |                          |                    | 9.5E-15            |           |              |                |            |              |             |          |
|          |           |             |                                       | Pu-241           | 3.1E-10            | 1.0E-03            |                    |          |                   |                          |                    | 3.1E-13            |           |              |                |            |              |             |          |
|          |           |             |                                       | Pu-242           | 4.8E-11            | 1.0E-03            |                    |          |                   |                          |                    | 4.8E-14            |           |              |                |            |              |             |          |
|          |           |             |                                       | Ra-226           | 1.1E-12            | 1.0E-03            |                    |          |                   |                          |                    | 1.1E-15            |           |              |                |            |              |             |          |
|          |           |             |                                       | Sb-125<br>Sr-90  | 3.6E-12            | 1.0E-03<br>1.0E-03 |                    |          |                   |                          |                    | 3.6E-15<br>1.4E-16 |           |              |                |            |              |             | +        |
|          |           |             |                                       | Tc-99            | 1.4E-13<br>1.1E-11 | 1.0E-03            |                    |          |                   |                          |                    | 1.4E-16<br>1.1E-14 |           |              |                |            |              |             | +        |
|          |           |             |                                       | Th-228           | 6.5E-12            | 1.0E-03            |                    |          |                   |                          |                    | 6.5E-15            |           |              |                |            |              |             | +        |
|          |           |             |                                       | Th-230           | 5.5E-14            | 1.0E-03            |                    |          |                   |                          |                    | 5.5E-17            |           |              |                |            |              |             | +        |
|          |           |             |                                       | Th-232           | 1.0E-12            | 1.0E-03            |                    |          |                   |                          |                    | 1.0E-15            |           |              |                |            |              |             | +        |
|          |           |             |                                       | U-234            | 1.7E-08            | 1.0E-03            |                    |          |                   |                          |                    | 1.7E-11            |           |              |                |            |              |             |          |
|          |           |             |                                       | U-235            | 2.3E-09            | 1.0E-03            |                    |          |                   |                          |                    | 2.3E-12            |           |              |                |            |              |             |          |
|          |           |             |                                       | U-238            | 1.7E-07            | 1.0E-03            |                    |          |                   |                          |                    | 1.7E-10            |           |              |                |            |              |             |          |
|          |           |             |                                       |                  |                    |                    |                    |          |                   |                          |                    |                    |           |              |                |            |              |             |          |
| 612      | Yard      | Area Source | Repackaging operation                 | Am-241<br>Am-242 | 4.3E-09<br>2.6E-11 | 1.0E-06<br>1.0E-06 | NA                 | NA       | NA                | None                     | 1                  | 4.3E-15<br>2.6E-17 | 444       | NNE          | 1.0E-09        | 212        | SSW          | 2.0E-09     | 5        |
|          |           |             |                                       | Am-243           | 7.4E-09            | 1.0E-06            |                    |          |                   |                          |                    | 7.4E-15            |           |              |                |            |              |             | +        |
|          |           |             |                                       | C-14             | 9.1E-11            | 1.0E-06            |                    |          |                   |                          |                    | 9.1E-17            |           |              |                |            |              |             |          |
|          |           |             |                                       | Ce-144           | 9.1E-11            | 1.0E-06            |                    |          |                   |                          |                    | 9.1E-17            |           |              |                |            |              |             | +        |
|          |           |             |                                       | Co-60            | 2.1E-09            | 1.0E-06            |                    |          |                   |                          |                    | 2.1E-15            |           |              |                |            |              |             |          |
|          |           |             |                                       | Cs-137           | 1.1E-09            | 1.0E-06            |                    |          |                   |                          |                    | 1.1E-15            |           |              |                |            |              |             |          |
|          |           | <u> </u>    |                                       | Eu-152           | 1.0E-08            | 1.0E-06            |                    |          |                   |                          |                    | 1.0E-14            |           |              |                |            |              |             |          |
|          |           |             |                                       | Eu-154           | 5.2E-09            | 1.0E-06            |                    |          |                   |                          |                    | 5.2E-15            |           |              |                |            |              |             |          |
|          |           |             | +                                     | Eu-155           | 9.7E-11            | 1.0E-06            | -                  |          | -                 |                          |                    | 9.7E-17            |           |              |                |            |              |             |          |
|          |           |             |                                       | H-3<br>K-40      | 6.7E-05<br>1.4E-10 | 1.0E-06<br>1.0E-06 |                    |          |                   |                          |                    | 6.7E-11<br>1.4E-16 | -         |              |                |            |              |             | +        |
|          |           |             | 1                                     | Np-237           | 8.9E-10            | 1.0E-06<br>1.0E-06 |                    |          | +                 |                          |                    | 8.9E-16            |           |              |                |            |              |             | +        |
|          |           |             |                                       | Pm-147           | 3.2E-11            | 1.0E-06            |                    |          |                   |                          |                    | 3.2E-17            |           |              |                |            |              |             | +        |
|          |           |             |                                       | Pu-238           | 4.0E-10            | 1.0E-06            |                    |          |                   |                          |                    | 4.0E-16            |           |              |                |            |              |             |          |
|          |           |             |                                       | Ra-226           | 1.9E-10            | 1.0E-06            |                    |          |                   |                          |                    | 1.9E-16            |           |              |                |            |              |             |          |
|          |           |             |                                       | Ra-228           | 2.3E-10            | 1.0E-06            |                    |          |                   |                          |                    | 2.3E-16            |           |              |                |            |              |             |          |
|          |           |             |                                       | Sb-125           | 5.9E-11            | 1.0E-06            |                    |          |                   |                          |                    | 5.9E-17            |           |              |                |            |              |             |          |
|          |           |             |                                       | Sm-151           | 9.9E-12            | 1.0E-06            |                    |          |                   |                          |                    | 9.9E-18            | -         |              |                |            |              |             |          |
|          |           |             |                                       | Sr-90            | 1.8E-10            | 1.0E-06            |                    |          | -                 |                          |                    | 1.8E-16<br>1.0E-15 |           |              |                |            |              |             | +        |
|          |           |             | +                                     | Th-228<br>U-234  | 1.0E-09<br>1.2E-07 | 1.0E-06<br>1.0E-06 |                    |          | -                 |                          |                    | 1.0E-15<br>1.2E-13 |           |              |                |            |              |             | +        |
|          |           |             |                                       | U-235            | 1.2E-07<br>1.6E-08 | 1.0E-06<br>1.0E-06 | 1                  |          | +                 |                          |                    | 1.2E-13<br>1.6E-14 |           |              |                |            |              |             | +        |
|          |           |             |                                       | U-238            | 1.3E-06            | 1.0E-06            |                    |          |                   |                          |                    | 1.3E-12            |           |              |                |            |              |             | +        |
|          |           |             |                                       | 2 230            |                    |                    |                    |          |                   |                          |                    | 1.02 12            |           |              |                |            |              |             | +        |
| 614      | Open Area | Area source | Repackaging of waste                  | H-3              | 4.7E-03            | 1.0E-03            | NA                 | NA       | NA                | None                     | 1                  | 4.7E-06            | 420       | NNE          | 2.9E-07        | 253        | ENE          | 6.5E-07     | 5        |
|          |           |             | liquid scintillation cocktail         | C-14             | 1.1E-05            | 1.0E-03            |                    |          |                   |                          |                    | 1.1E-08            |           |              |                |            |              |             |          |
|          |           |             |                                       | S-35             | 2.3E-07            | 1.0E-03            |                    |          |                   |                          |                    | 2.3E-10            |           |              |                |            |              |             |          |
|          |           |             |                                       | Se-75            | 2.3E-07            | 1.0E-03            |                    |          |                   |                          | -                  | 2.3E-10            |           |              |                |            |              |             |          |
|          |           |             |                                       | Th-232           | 9.1E-09            | 1.0E-03            | -                  |          | -                 |                          |                    | 9.1E-12            |           |              |                |            |              |             | _        |
|          |           |             |                                       | U-233            | 4.6E-09            | 1.0E-03<br>1.0E-03 |                    |          |                   |                          |                    | 4.6E-12<br>2.2E-11 |           |              |                |            |              |             | +        |
|          |           |             | 1                                     | Pu-238           | 2.2E-08            | 1.0⊑-03            | 1                  | L        | 1                 |                          |                    | Z.ZE-11            | L         |              |                | 1          |              | 1           |          |

| Building                                 | Room/Area                                                     | Stack ID                                                  | Operation                                                                                                                                                    | Radionuclides                                                                             | Annual Inventory                                          | Physical                                | Stack                      | Stack                                | Stack                                | Control                            | Control Device    | Estimated                                                  | 10 mrem/y S                   | ite-Wide Dos | e Requirement                                                      | 0.1 mrem/                      | y Monitoring     | Requirement                                                   | Source           |
|------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|----------------------------|--------------------------------------|--------------------------------------|------------------------------------|-------------------|------------------------------------------------------------|-------------------------------|--------------|--------------------------------------------------------------------|--------------------------------|------------------|---------------------------------------------------------------|------------------|
|                                          |                                                               |                                                           | ·                                                                                                                                                            |                                                                                           | with Potential for                                        | State                                   | Height (m)                 | Diameter                             | Velocity                             | Device(s)                          | Abatement         | Annual Emissions                                           | Distance to                   |              | EDE                                                                | Distance                       | Direction        | Unabated                                                      | Category         |
|                                          |                                                               |                                                           |                                                                                                                                                              |                                                                                           | Release (Ci)                                              | Factor                                  |                            | (m)                                  | (m/s)                                |                                    | Factor            | (Ci)                                                       | SWMEI (m)                     | to SWMEI     | (mrem)                                                             | to MEI (m)                     | to MEI           | EDE (mrem)                                                    |                  |
| 614                                      | Open Area                                                     | (continued)                                               |                                                                                                                                                              | Pu-239                                                                                    | 1.8E-12                                                   | 1.0E-03                                 |                            |                                      |                                      |                                    |                   | 1.8E-15                                                    |                               |              |                                                                    |                                |                  |                                                               |                  |
|                                          |                                                               |                                                           |                                                                                                                                                              | Pu-240                                                                                    | 1.8E-10                                                   | 1.0E-03                                 |                            |                                      |                                      |                                    |                   | 1.8E-13                                                    |                               |              |                                                                    |                                |                  |                                                               |                  |
|                                          |                                                               |                                                           |                                                                                                                                                              | Pu-241                                                                                    | 4.1E-08                                                   | 1.0E-03                                 |                            |                                      |                                      |                                    |                   | 4.1E-11                                                    |                               |              |                                                                    |                                |                  |                                                               |                  |
|                                          |                                                               |                                                           |                                                                                                                                                              | Pu-242                                                                                    | 9.5E-08                                                   | 1.0E-03                                 |                            |                                      |                                      |                                    |                   | 9.5E-11                                                    |                               |              |                                                                    |                                |                  |                                                               |                  |
|                                          |                                                               |                                                           |                                                                                                                                                              | U-234                                                                                     | 2.3E-09                                                   | 1.0E-03                                 |                            |                                      |                                      |                                    |                   | 2.3E-12                                                    |                               |              |                                                                    |                                |                  |                                                               |                  |
|                                          |                                                               |                                                           |                                                                                                                                                              | U-235                                                                                     | 1.0E-10                                                   | 1.0E-03                                 |                            |                                      |                                      |                                    |                   | 1.0E-13                                                    |                               |              |                                                                    |                                |                  |                                                               |                  |
|                                          |                                                               |                                                           |                                                                                                                                                              | U-238                                                                                     | 2.2E-09                                                   | 1.0E-03                                 |                            |                                      |                                      |                                    |                   | 2.2E-12                                                    |                               |              |                                                                    |                                |                  |                                                               |                  |
| The South                                | heast Quadrant of the                                         | Livermore Site has slightly ele                           | evated levels of Pu-239 in the surface s                                                                                                                     | l<br>soil and air (presuma                                                                | ably from resuspension                                    | ). The source                           | be of the Pu-239 v         | <br>was past waste n                 | l<br>nanagement ope                  | rations.                           |                   |                                                            |                               |              |                                                                    |                                |                  |                                                               |                  |
| Southeast                                | t Quadrant                                                    | Area Source                                               | Resuspension                                                                                                                                                 | Pu-239                                                                                    | NA                                                        | NA                                      | NA                         | NA                                   | NA                                   | None                               | 1                 | NA                                                         | 0                             | NA           | 8.8E-04                                                            | NA                             | NA               | NA                                                            | 6                |
| CITE 200 F                               | DIFFUSE SOURCES                                               |                                                           |                                                                                                                                                              |                                                                                           |                                                           |                                         |                            |                                      |                                      |                                    |                   |                                                            |                               |              |                                                                    |                                |                  |                                                               |                  |
| 311E 300 E                               | DIFFUSE SOUNCES                                               |                                                           |                                                                                                                                                              |                                                                                           |                                                           |                                         |                            |                                      |                                      |                                    |                   |                                                            |                               |              |                                                                    |                                |                  |                                                               |                  |
| Diffuse so                               | purces consist of resus                                       | spension of depleted uranium a                            | and waste handling.                                                                                                                                          |                                                                                           |                                                           |                                         |                            |                                      |                                      |                                    |                   |                                                            |                               |              |                                                                    |                                |                  |                                                               |                  |
| Site 300                                 | All                                                           | Area Source                                               | Soil resuspension                                                                                                                                            | U-238                                                                                     | NA                                                        | NA                                      | NA                         | NA                                   | NA                                   | None                               | 1                 | NA                                                         | NA                            | NA           | 3.7E-03                                                            | NA                             | NA               | NA                                                            | 6                |
|                                          |                                                               |                                                           | ·                                                                                                                                                            | U-235                                                                                     | NA                                                        | NA                                      |                            |                                      |                                      |                                    |                   | NA                                                         |                               |              |                                                                    |                                |                  |                                                               |                  |
|                                          |                                                               |                                                           |                                                                                                                                                              | U-234                                                                                     | NA                                                        | NA                                      |                            |                                      |                                      |                                    |                   | NA                                                         |                               |              |                                                                    |                                |                  |                                                               |                  |
|                                          |                                                               |                                                           |                                                                                                                                                              |                                                                                           |                                                           |                                         |                            |                                      |                                      |                                    |                   |                                                            |                               |              |                                                                    |                                |                  |                                                               |                  |
| 804                                      | Open Area                                                     | Area Source                                               | Low-level waste staging area                                                                                                                                 | H-3                                                                                       | NA                                                        | NA                                      | NA                         | NA                                   | NA                                   | None                               | 1                 | 3.9E-04                                                    | 4508                          | S            | 2.1E-07                                                            | 828                            | N                | 4.5E-06                                                       | 6                |
|                                          |                                                               |                                                           |                                                                                                                                                              | U-238                                                                                     | NA                                                        | NA                                      |                            |                                      |                                      |                                    |                   | 5.1E-08                                                    |                               |              |                                                                    |                                |                  |                                                               |                  |
|                                          |                                                               |                                                           |                                                                                                                                                              | U-235                                                                                     | NA                                                        | NA                                      |                            |                                      |                                      |                                    |                   | 6.5E-10                                                    |                               |              |                                                                    |                                |                  |                                                               |                  |
|                                          |                                                               |                                                           |                                                                                                                                                              | U-234                                                                                     | NA                                                        | NA                                      |                            |                                      |                                      |                                    |                   | 3.1E-09                                                    |                               |              |                                                                    |                                |                  |                                                               |                  |
|                                          |                                                               |                                                           |                                                                                                                                                              |                                                                                           |                                                           |                                         |                            |                                      |                                      |                                    |                   |                                                            |                               |              |                                                                    |                                |                  |                                                               |                  |
| EMISSION                                 | SOURCES THAT ACC                                              | COUNT FOR MORE THAN 90%                                   | OF THE POTENTIAL EFFECTIVE DOSE                                                                                                                              | EQUIVALENT AT EA                                                                          | CH SITE.                                                  |                                         |                            |                                      |                                      |                                    |                   |                                                            |                               |              |                                                                    |                                |                  |                                                               |                  |
| LIVERMOF                                 | RE SITE SOURCES                                               |                                                           |                                                                                                                                                              |                                                                                           |                                                           |                                         |                            |                                      |                                      |                                    |                   |                                                            |                               |              |                                                                    |                                |                  |                                                               |                  |
|                                          |                                                               |                                                           |                                                                                                                                                              |                                                                                           |                                                           |                                         |                            |                                      |                                      |                                    |                   |                                                            |                               |              |                                                                    |                                |                  |                                                               |                  |
| 612                                      | Yard                                                          | Area Source                                               | Storage of low level waste                                                                                                                                   | H-3                                                                                       | NA                                                        | NA                                      | NA                         | NA                                   | NA                                   | None                               | 1                 | 2.0E+00                                                    | 444                           | NNE          | 8.2E-03                                                            | 212                            | SSW              | 1.6E-02                                                       | 6                |
| 612                                      |                                                               | Area Source                                               | Storage of low level waste                                                                                                                                   |                                                                                           |                                                           | NA                                      |                            |                                      |                                      |                                    | 1                 |                                                            |                               |              |                                                                    |                                |                  |                                                               | 6                |
| 331                                      | Yard All**                                                    | Stack 1                                                   | Storage of low level waste  Tritium research and development                                                                                                 | H-3                                                                                       | *                                                         | NA<br>1                                 | 30                         | 1.22                                 | 7.59                                 | None<br>None                       | 1                 | 2.7E+00                                                    | 957                           | NNE          | 4.3E-03                                                            | 212<br>957                     | SSW              | 4.3E-03                                                       | 6                |
|                                          |                                                               |                                                           |                                                                                                                                                              |                                                                                           |                                                           |                                         |                            |                                      |                                      |                                    |                   |                                                            |                               |              |                                                                    |                                |                  |                                                               |                  |
|                                          |                                                               | Stack 1                                                   | Tritium research and development                                                                                                                             | H-3                                                                                       | *                                                         | 1                                       | 30                         | 1.22                                 | 7.59                                 | None                               | 1                 | 2.7E+00                                                    |                               |              | 4.3E-03                                                            |                                |                  | 4.3E-03                                                       |                  |
| 331<br>514                               | All**  Tank Farm                                              | Stack 1<br>Stack 2<br>Area Source                         | Tritium research and development Decontamination of parts  Process liquid hazardous                                                                          | H-3<br>H-3<br>Various nuclides                                                            | *<br>*<br>1.5E-04                                         | 1 1 0.001                               | 30<br>30<br>NA             | 1.22<br>1.22<br>NA                   | 7.59<br>10.5<br>NA                   | None<br>None<br>None               | 1 1               | 2.7E+00<br>1.7E+01<br>1.52E-07                             | 957<br>528                    | ENE<br>NE    | 4.3E-03<br>3.1E-03 ***                                             | 957                            | ENE<br>SW        | 4.3E-03<br>3.1E-03 ***                                        | 3 5              |
| 331<br>514                               | All**                                                         | Stack 1<br>Stack 2                                        | Tritium research and development  Decontamination of parts                                                                                                   | H-3<br>H-3                                                                                | *                                                         | 1                                       | 30                         | 1.22                                 | 7.59<br>10.5                         | None<br>None                       | 1 1               | 2.7E+00<br>1.7E+01                                         | 957                           | ENE          | 4.3E-03<br>3.1E-03 ***                                             | 957                            | ENE              | 4.3E-03<br>3.1E-03 ***                                        | 3                |
| 331<br>514                               | All**  Tank Farm                                              | Stack 1<br>Stack 2<br>Area Source                         | Tritium research and development Decontamination of parts  Process liquid hazardous                                                                          | H-3<br>H-3<br>Various nuclides                                                            | *<br>*<br>1.5E-04                                         | 1 1 0.001                               | 30<br>30<br>NA             | 1.22<br>1.22<br>NA                   | 7.59<br>10.5<br>NA                   | None<br>None<br>None               | 1 1               | 2.7E+00<br>1.7E+01<br>1.52E-07                             | 957<br>528                    | ENE<br>NE    | 4.3E-03<br>3.1E-03 ***                                             | 957                            | ENE<br>SW        | 4.3E-03<br>3.1E-03 ***                                        | 3 5              |
| 331<br>514<br>Southeast                  | All**  Tank Farm  t Quadrant                                  | Stack 1 Stack 2  Area Source  Area Source                 | Tritium research and development Decontamination of parts  Process liquid hazardous  Resuspension                                                            | H-3<br>H-3<br>Various nuclides                                                            | 1.5E-04                                                   | 1<br>1<br>0.001                         | 30<br>30<br>NA             | 1.22<br>1.22<br>NA                   | 7.59<br>10.5<br>NA                   | None<br>None<br>None               | 1 1 1             | 2.7E+00<br>1.7E+01<br>1.52E-07                             | 957<br>528<br>0               | ENE NE NA    | 4.3E-03<br>3.1E-03 ***<br>1.3E-03<br>8.8E-04                       | 957<br>217<br>NA               | SW NA            | 4.3E-03<br>3.1E-03 ***<br>3.0E-03                             | 5 6              |
| 331 514 Southeast 612 514                | Tank Farm  t Quadrant  102  Evaporator                        | Stack 1 Stack 2  Area Source  Area Source  Room Air       | Tritium research and development Decontamination of parts  Process liquid hazardous  Resuspension  Laboratory analysis                                       | H-3 H-3 Various nuclides Pu-239 Various nuclides                                          | 1.5E-04<br>NA<br>5.6E-05                                  | 1<br>1<br>0.001<br>NA<br>0.001          | 30<br>30<br>NA<br>NA       | 1.22<br>1.22<br>NA<br>NA             | 7.59<br>10.5<br>NA<br>NA             | None None None None None           | 1 1 1 1 1 1       | 2.7E+00<br>1.7E+01<br>1.52E-07<br>NA<br>5.6E-08            | 957<br>528<br>0<br>444        | NE NA NE     | 4.3E-03<br>3.1E-03 ***<br>1.3E-03<br>8.8E-04<br>6.2E-04            | 957<br>217<br>NA<br>295        | SW NA ENE        | 4.3E-03<br>3.1E-03 ****<br>3.0E-03<br>NA<br>9.4E-04           | 3<br>5<br>6      |
| 331 514 Southeast 612 514                | Tank Farm  t Quadrant                                         | Stack 1 Stack 2  Area Source  Area Source  Room Air       | Tritium research and development Decontamination of parts  Process liquid hazardous  Resuspension  Laboratory analysis                                       | H-3 H-3 Various nuclides Pu-239 Various nuclides                                          | 1.5E-04<br>NA<br>5.6E-05                                  | 1<br>1<br>0.001<br>NA<br>0.001          | 30<br>30<br>NA<br>NA       | 1.22<br>1.22<br>NA<br>NA             | 7.59<br>10.5<br>NA<br>NA             | None None None None None           | 1 1 1 1 1 1       | 2.7E+00<br>1.7E+01<br>1.52E-07<br>NA<br>5.6E-08            | 957<br>528<br>0<br>444        | NE NA NE     | 4.3E-03<br>3.1E-03 ***<br>1.3E-03<br>8.8E-04<br>6.2E-04            | 957<br>217<br>NA<br>295        | SW NA ENE        | 4.3E-03<br>3.1E-03 ****<br>3.0E-03<br>NA<br>9.4E-04           | 3<br>5<br>6      |
| 331 514 Southeast 612 514                | Tank Farm  t Quadrant  102  Evaporator                        | Stack 1 Stack 2  Area Source  Area Source  Room Air       | Tritium research and development Decontamination of parts  Process liquid hazardous  Resuspension  Laboratory analysis                                       | H-3 H-3 Various nuclides Pu-239 Various nuclides                                          | 1.5E-04<br>NA<br>5.6E-05                                  | 1<br>1<br>0.001<br>NA<br>0.001          | 30<br>30<br>NA<br>NA       | 1.22<br>1.22<br>NA<br>NA             | 7.59<br>10.5<br>NA<br>NA             | None None None None None           | 1 1 1 1 1 1       | 2.7E+00<br>1.7E+01<br>1.52E-07<br>NA<br>5.6E-08            | 957<br>528<br>0<br>444        | NE NA NE     | 4.3E-03<br>3.1E-03 ***<br>1.3E-03<br>8.8E-04<br>6.2E-04            | 957<br>217<br>NA<br>295        | SW NA ENE        | 4.3E-03<br>3.1E-03 ****<br>3.0E-03<br>NA<br>9.4E-04           | 3<br>5<br>6      |
| 331  514  Southeast 612  514  SITE 300 S | Tank Farm  t Quadrant  102  Evaporator  SOURCES               | Stack 1 Stack 2  Area Source  Area Source  Room Air       | Tritium research and development Decontamination of parts  Process liquid hazardous  Resuspension  Laboratory analysis  Waste consolidation                  | H-3 H-3 Various nuclides Pu-239 Various nuclides Various nuclides U-238 U-235             | * 1.5E-04  NA 5.6E-05  0.0001  6.2E-02 8.0E-04            | 1<br>1<br>0.001<br>NA<br>0.001          | 30<br>30<br>NA<br>NA<br>NA | 1.22<br>1.22<br>NA<br>NA<br>NA       | 7.59<br>10.5<br>NA<br>NA<br>NA       | None None None None None None      | 1 1 1 1 1 1 1     | 2.7E+00<br>1.7E+01<br>1.52E-07<br>NA<br>5.6E-08<br>1.0E-07 | 957<br>528<br>0<br>444<br>528 | NE NE NE     | 4.3E-03<br>3.1E-03 ***<br>1.3E-03<br>8.8E-04<br>6.2E-04<br>5.8E-04 | 957<br>217<br>NA<br>295<br>217 | SW NA ENE SW     | 4.3E-03<br>3.1E-03 ***<br>3.0E-03<br>NA<br>9.4E-04            | 5 6 1            |
| 331  514  Southeast 612  514  SITE 300 S | Tank Farm  t Quadrant  102  Evaporator  SOURCES               | Stack 1 Stack 2  Area Source  Area Source  Room Air       | Tritium research and development Decontamination of parts  Process liquid hazardous  Resuspension  Laboratory analysis  Waste consolidation                  | H-3 H-3 Various nuclides Pu-239 Various nuclides Various nuclides                         | * 1.5E-04  NA 5.6E-05 0.0001                              | 1<br>1<br>0.001<br>NA<br>0.001<br>0.001 | 30<br>30<br>NA<br>NA<br>NA | 1.22<br>1.22<br>NA<br>NA<br>NA       | 7.59<br>10.5<br>NA<br>NA<br>NA       | None None None None None None      | 1 1 1 1 1 1 1     | 2.7E+00<br>1.7E+01<br>1.52E-07<br>NA<br>5.6E-08<br>1.0E-07 | 957<br>528<br>0<br>444<br>528 | NE NE NE     | 4.3E-03<br>3.1E-03 ***<br>1.3E-03<br>8.8E-04<br>6.2E-04<br>5.8E-04 | 957<br>217<br>NA<br>295<br>217 | SW NA ENE SW     | 4.3E-03<br>3.1E-03 ***<br>3.0E-03<br>NA<br>9.4E-04            | 5 6 1            |
| 331  514  Southeast 612  514  SITE 300 S | Tank Farm  t Quadrant  102  Evaporator  SOURCES  Firing Table | Stack 1 Stack 2 Area Source Area Source Room Air Room Air | Tritium research and development Decontamination of parts  Process liquid hazardous  Resuspension  Laboratory analysis  Waste consolidation  Explosive tests | H-3 H-3 Various nuclides Pu-239 Various nuclides Various nuclides U-238 U-235 U-234       | * 1.5E-04  NA 5.6E-05  0.0001  6.2E-02 8.0E-04 5.8E-03    | 1<br>1<br>0.001<br>NA<br>0.001<br>0.001 | 30<br>30<br>NA<br>NA<br>NA | 1.22<br>1.22<br>NA<br>NA<br>NA<br>NA | 7.59<br>10.5<br>NA<br>NA<br>NA<br>NA | None None None None None None None | 1 1 1 1 1 1 1 1 1 | 2.7E+00<br>1.7E+01<br>1.52E-07<br>NA<br>5.6E-08<br>1.0E-07 | 957<br>528<br>0<br>444<br>528 | NE NE NE SSE | 4.3E-03<br>3.1E-03 ***<br>1.3E-03<br>8.8E-04<br>6.2E-04<br>5.8E-04 | 957  217  NA  295  217  1396   | SW NA ENE SW WSW | 4.3E-03<br>3.1E-03 ***<br>3.0E-03<br>NA<br>9.4E-04<br>1.2E-03 | 3<br>5<br>6<br>1 |
| 331  514  Southeast 612  514  SITE 300 S | Tank Farm  t Quadrant  102  Evaporator  SOURCES  Firing Table | Stack 1 Stack 2  Area Source  Area Source  Room Air       | Tritium research and development Decontamination of parts  Process liquid hazardous  Resuspension  Laboratory analysis  Waste consolidation                  | H-3 H-3 Various nuclides Pu-239 Various nuclides Various nuclides U-238 U-235 U-234 U-238 | * 1.5E-04  NA  5.6E-05  0.0001  6.2E-02  8.0E-04  5.8E-03 | 1<br>0.001<br>NA<br>0.001<br>0.001      | 30<br>30<br>NA<br>NA<br>NA | 1.22<br>1.22<br>NA<br>NA<br>NA       | 7.59<br>10.5<br>NA<br>NA<br>NA       | None None None None None None      | 1 1 1 1 1 1 1     | 2.7E+00<br>1.7E+01<br>1.52E-07<br>NA<br>5.6E-08<br>1.0E-07 | 957<br>528<br>0<br>444<br>528 | NE NE NE     | 4.3E-03<br>3.1E-03 ***<br>1.3E-03<br>8.8E-04<br>6.2E-04<br>5.8E-04 | 957<br>217<br>NA<br>295<br>217 | SW NA ENE SW     | 4.3E-03<br>3.1E-03 ***<br>3.0E-03<br>NA<br>9.4E-04            | 5 6 1            |
| 331  514  Southeast 612  514  SITE 300 S | Tank Farm  t Quadrant  102  Evaporator  SOURCES  Firing Table | Stack 1 Stack 2 Area Source Area Source Room Air Room Air | Tritium research and development Decontamination of parts  Process liquid hazardous  Resuspension  Laboratory analysis  Waste consolidation  Explosive tests | H-3 H-3 Various nuclides Pu-239 Various nuclides Various nuclides U-238 U-235 U-234       | * 1.5E-04  NA 5.6E-05  0.0001  6.2E-02 8.0E-04 5.8E-03    | 1<br>1<br>0.001<br>NA<br>0.001<br>0.001 | 30<br>30<br>NA<br>NA<br>NA | 1.22<br>1.22<br>NA<br>NA<br>NA<br>NA | 7.59<br>10.5<br>NA<br>NA<br>NA<br>NA | None None None None None None None | 1 1 1 1 1 1 1 1 1 | 2.7E+00<br>1.7E+01<br>1.52E-07<br>NA<br>5.6E-08<br>1.0E-07 | 957<br>528<br>0<br>444<br>528 | NE NE NE SSE | 4.3E-03<br>3.1E-03 ***<br>1.3E-03<br>8.8E-04<br>6.2E-04<br>5.8E-04 | 957  217  NA  295  217  1396   | SW NA ENE SW WSW | 4.3E-03<br>3.1E-03 ***<br>3.0E-03<br>NA<br>9.4E-04<br>1.2E-03 | 3<br>5<br>6<br>1 |

# **ATTACHMENT 2. Surrogate Radionuclides List**

The need for selection of a surrogate isotope occurs when an isotope used in operations (isotope of interest) is not contained in the limited nuclide library in the NESHAPs dose compliance model CAP88-PC. The selection of a suitable surrogate is based upon several criteria. If possible, a surrogate isotope is chosen from the CAP88-PC radionuclide library that has a metabolically similar behavior to the isotope of interest. Following an acute inhalation exposure, the metabolically similar surrogate would concentrate in the same specific organs and tissues as the isotope of interest. In most cases the surrogate selected possesses similar modes of decay and decay energies of the radiation type of the isotope of interest. Thus, the surrogate models the behavior of the isotope with similar relative biological effect due to deposition energy.

According to present knowledge, the daughter nuclides produced following physical decay are assumed to remain organ site specific and follow the translocation pathway of the parent. Therefore, when a surrogate of similar metabolic behavior is not available or has a greatly dissimilar half-life, the surrogate chosen is a daughter nuclide of the isotope of interest that will remain organ site specific and follow the translocation pathway of the parent.

Once a surrogate has been selected, the equivalent source term is adjusted by the product of the initial inventory of the isotope of interest and the ratio of the effective dose equivalent of the surrogate to that of the isotope of interest. For determining the dose ratio, the primary exposure pathway is assumed to be that of inhalation and inhalation dose conversion factors (International Commission on Radiological Protection Publication No. 71, "Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 4 Inhalation Dose Coefficients," Elsevier Science Ltd., 1996) are used for determination of the effective dose equivalents.

In addition, isotopic analysis of mixtures of radionuclides are not always available, and radionuclide usage inventories are stated as "gross alpha," "gross beta," "gross gamma," or "mixed fission products" (MFP). In these cases, <sup>239</sup>Pu is used as the surrogate for gross alpha, <sup>137</sup>Cs is used as the surrogate for gross gamma, and <sup>90</sup>Sr is used as the surrogate for gross beta and mixed fission products to provide conservative dose estimates.

Table 2-1 provides a list of radionuclides not in the CAP88-PC library and their respective surrogates.

Table 2-1. List of surrogate radionuclides.

| Isotope         | Half-<br>Life         | Lung<br>Class <sup>a</sup> | ALI (inh)<br>μCi      | DAC (inh)<br>μCi/m <sup>3</sup> | Surrogate       | Half-<br>e Life        | Lung<br>Class <sup>a</sup> | ALI (inh)<br>μCi     | DAC (inh)<br>μCi/m <sup>3</sup> |
|-----------------|-----------------------|----------------------------|-----------------------|---------------------------------|-----------------|------------------------|----------------------------|----------------------|---------------------------------|
| Ca-108m         | 127 y                 | Y                          | 2.0 × 10 <sup>1</sup> | 1.0 × 10-8                      | Co-60           | 5.271 y                | Y                          | $3.0 \times 10^{1}$  | 1.0 × 10-8                      |
| Bi-207          | 38 y                  | W                          | $4.0 \times 10^{2}$   | $1.0 \times 10^{-7}$            | Bi-214          | 19.9 min               | W                          | $9.0 \times 10^{2}$  | $4.0 \times 10^{-7}$            |
| Ca-45           | 163 d                 | W                          | $8.0 \times 10^{2}$   | $4.0 \times 10^{-7}$            | Sr-90           | 29.12 y                | D                          | $2.0 \times 10^{1}$  | $8.0 \times 10^{-9}$            |
| Cd-109          | 464 d                 | Y                          | $1.0 \times 10^{2}$   | $5.0 \times 10^{-8}$            | Co-60           | 5.271 y                | Y                          | $3.0 \times 10^{1}$  | $1.0 \times 10^{-8}$            |
| Cf-249          | 350.6 y               | Y                          | $1.0 \times 10^{-2}$  | $4.0 \times 10^{-12}$           | Cm-245          | 8500 y                 | W                          | $6.0 \times 10^{-3}$ | $3.0 \times 10^{-12}$           |
| Cf-250          | 13.1 y                | W                          | $9.0 \times 10^{-3}$  | $4.0 \times 10^{-12}$           | Am-241          | 432.2 y                | W                          | $6.0 \times 10^{-3}$ | $3.0 \times 10^{-12}$           |
| <b>Cl-36</b>    | 3.01× 10 <sup>5</sup> | y W                        | $2.0 \times 10^{2}$   | $1.0 \times 10^{-7}$            | Cs-137          | 30 y                   | D                          | $2.0 \times 10^{2}$  | $6.0 \times 10^{-8}$            |
| Es-254          | 275.7 d               | W                          | $7.0 \times 10^{-2}$  | $3.0 \times 10^{-11}$           | Pu-239          | 24065 y                | Y                          | $2.0 \times 10^{-2}$ | $7.0 \times 10^{-12}$           |
| Eu-149          | 93.1 d                | W                          | $3.0 \times 10^{3}$   | $1.0 \times 10^{-6}$            | Pm-151          | 28.4 hr                | Y                          | $3.0 \times 10^{3}$  | $1.0 \times 10^{-6}$            |
| Gd-148          | 93 y                  | D                          | $8.0 \times 10^{-3}$  | $3.0 \times 10^{-12}$           | La-140          | 40.272 h               | W                          | $1.0 \times 10^3$    | $5.0 \times 10^{-7}$            |
| Os-185          | 94 d                  | D                          | $5.0 \times 10^{2}$   | $2.0 \times 10^{-7}$            | Mo-99           | 66 h                   | Y                          | $1.0 \times 10^3$    | $6.0 \times 10^{-7}$            |
| P-33            | 25.4 d                | W                          | $3.0 \times 10^3$     | $1.0 \times 10^{-6}$            | P-32            | 14.29 d                | D                          | $9.0 \times 10^{2}$  | $4.0 \times 10^{-7}$            |
| Re-184          | 38 d                  | W                          | $1.0 \times 10^3$     | $6.0 \times 10^{-7}$            | Mo-99           | 66 h                   | Y                          | $1.0 \times 10^3$    | $6.0 \times 10^{-7}$            |
| Se-75           | 119.8 d               | W                          | $6.0 \times 10^{2}$   | $3.0 \times 10^{-7}$            | As-76           | 26.32 h                | W                          | $1.0 \times 10^3$    | $6.0 \times 10^{-7}$            |
| Sr-85           | 64.8 d                | D                          | $3.0 \times 10^3$     | $1.0 \times 10^{-6}$            | Sr-90           | 29.12 y                | D                          | $2.0 \times 10^{1}$  | $8.0 \times 10^{-9}$            |
| Ta-182          | 115 d                 | Y                          | $1.0 \times 10^2$     | $6.0 \times 10^{-8}$            | Hf-181          | 42.4 d                 | W                          | $4.0 \times 10^2$    | $2.0 \times 10^{-7}$            |
| Tb-157          | 110 y                 | W                          | $3.0 \times 10^2$     | $1.0 \times 10^{-7}$            | La-140          | 40.272 h               | W                          | $1.0 \times 10^3$    | $5.0 \times 10^{-7}$            |
| Tb-158          | 180 y                 | W                          | $2.0 \times 10^{1}$   | $8.0 \times 10^{-9}$            | La-140          | 40.272 h               | W                          | $1.0 \times 10^3$    | $5.0 \times 10^{-7}$            |
| T1-204          | 3.78 y                | D                          | $2.0 \times 10^3$     | $9.0 \times 10^{-7}$            | Pb-214          | 26.8 min               | D                          | $8.0 \times 10^2$    | $3.0 \times 10^{-7}$            |
| Tm-168          | 93.1 d                | W                          | $2.0 \times 10^3$     | $8.0 \times 10^{-7}$            | La-140          | 40.272 h               | W                          | $1.0 \times 10^3$    | $5.0 \times 10^{-7}$            |
| Tm-171          | 1.92 y                | Y                          | $3.0 \times 10^2$     | $1.0 \times 10^{-7}$            | La-140          | 40.272 h               | W                          | $1.0 \times 10^3$    | $5.0 \times 10^{-7}$            |
| Y-88            | 106.64 d              | Y                          | $2.0 \times 10^2$     | $1.0 \times 10^{-7}$            | Y-90            | 64 h                   | Y                          | $6.0 \times 10^2$    | $3.0 \times 10^{-7}$            |
| Am-244          | 10.1 h                | W                          | $2.0 \times 10^2$     | $8.0 \times 10^{-8}$            | Cm-244          | 18.11 y                | W                          | $1.0 \times 10^{-2}$ | $5.0 \times 10^{-12}$           |
| Au-195          | 183 d                 | Y                          | $4.0 \times 10^2$     | $2.0 \times 10^{-7}$            | Ba-133          | 10.74 y                | D                          | $7.0 \times 10^2$    | $3.0 \times 10^{-7}$            |
| Co-56           | 78.76 d               | Y                          | $2.0 \times 10^2$     | $8.0 \times 10^{-8}$            | Co-60           | 5.271 y                | Y                          | $3.0 \times 10^{1}$  | $1.0 \times 10^{-8}$            |
| Gd-146          | 48.3 d                | W                          | $3.0 \times 10^2$     | $1.0 \times 10^{-7}$            | <b>Sm-147</b> 1 | .06×10 <sup>11</sup> y | v W                        | $4.0 \times 10^{-2}$ | $2.0 \times 10^{-11}$           |
| Kr-85           | 10.72 y               | Gas                        | See Note              | $1.0 \times 10^{-4}$            |                 |                        |                            |                      |                                 |
| Rh-102          | 2.9 y                 | Y                          | $6.0\times10^{1}$     | $2.0 \times 10^{-8}$            | Rh-106m         | 29.9 s                 | Y                          | $4.0\times10^4$      | $1.0\times10^{-5}$              |
| U-239           | 23.54 mir             | ιY                         | $2.0\times10^{5}$     | $6.0 \times 10^{-5}$            | U-240           | 14.1 h                 | Y                          | $2.0 \times 10^3$    | $1.0 \times 10^{-6}$            |
| Zr-90           | 809 ms                | W                          | N/A                   | N/A                             | Y-90            | 64 h                   | Y                          | $6.0 \times 10^2$    | $3.0 \times 10^{-7}$            |
| <b>Po-209</b> b | 102 y                 | N/A                        | N/A                   | N/A                             | Pu-239          | 24065 y                | Y                          | $2.0 \times 10^{-2}$ | $7.0 \times 10^{-12}$           |

Note: The DAC for Kr-85 also has been relaxed considerably since its beta emission only irradiates the skin. The DAC is based on limitation of non-stochastic effects in the skin; the MPC was derived assuming that the beta particles of energy greater than 0.1 MeV contributed to the whole body dose.

a D = days, W = weeks, Y = years.

No ALI or DAC information available. Pu-239 used to provide a conservative alpha-emitter dose. Source: Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion
 Factors for Inhalation, Submersion and Ingestion, Federal Guidance Report No. 11, EPA-520/1-88-020, U.S. Environmental Protection Agency, 1988.

# ATTACHMENT 3. Content and Outcome of Proposal to EPA for Use of a Graded-Risk Approach for NESHAPs Compliance



#### **Lawrence Livermore National Laboratory**

ENVIRONMENTAL PROTECTION DEPARTMENT Operations and Regulatory Affairs Division

July 12, 2001

Jack Broadbent, Director Air Division U.S. Environmental Protection Agency, Region IX 75 Hawthorne St. San Francisco, CA 94105

# Subject: Graded Approach to Compliance Demonstration for Radionuclide NESHAPs

By a letter dated February 9, 2001, Lawrence Livermore National Laboratory (LLNL) personnel suggested the possibility of changing our graded approach to compliance demonstration for radionuclide NESHAPs (40 CFR 61, Subpart H). Shortly thereafter, U.S. EPA Region IX staff, by telephone, asked for additional information about our suggested change. This letter is provided in an effort to explain and support our February 9 request.

Our current practice to demonstrate compliance is to provide an annual accounting for stack-monitored sources, explosive test dispersion, surveillance-monitored diffuse sources, new inventoried sources, and previously inventoried sources that contribute to 90% of the dose (when ordered by largest contributors), and to provide a complete accounting of all sources, no matter how small or insignificant, every three years.

Our proposed compliance demonstration would not affect our annual evaluation and reporting of stack monitored sources, explosive test dispersion, or surveillance monitored diffuse sources. Only the treatment of inventoried sources would be modified. (Inventoried sources are those for which the emissions estimates are based on Appendix D to Part 61—Methods for Estimating Radionuclide Emissions.) We would like to establish a risk-based graded approach where inventoried sources with a lifetime risk level of greater than  $1 \times 10^{-10}$  would be evaluated every year (about 20—25 sources) and the dose consequences reported in the annual report. Those sources with a lesser risk/dose would be evaluated before startup and whenever there are changes in operations, with the dose consequences documented to internally maintained files. (A risk of  $1 \times 10^{-10}$  is equivalent to 0.000005 mrem, based on the EPA risk factor of  $2 \times 10^{-4}$  per 10 mrem exposure, as stated in the radionuclide NESHAPs Final Rule promulgation 54 Fed. Reg. 51654, *et seq.*)

The value  $1\times 10^{-10}$  risk as a point for determination of significance was chosen because it is three orders of magnitude below the "negligible individual dose level" of  $1\times 10^{-7}$  (annual risk commitment increment) suggested by the National Council on Radiological Protection and Measurements (NCRP) as the lower limit for the application of ALARA



TAMM01-030-01\_91\_I

An Equal Opportunity Employer • University of California • P.O. Box 808 Livermore, CA 94551-9900 • Telephone (925) 422-1100 • http://www.linl.gov

Mr. Jack Broadbent, Director, Air Division U.S. Environmental Protection Agency, Region IX Page 2

SUBJECT: Graded Approach to Compliance Demonstration for Radionuclide NESHAPs

(NCRP Report #91; Recommendations on Limits for Exposure to Ionizing Radiation, 1987). The NCRP describes the NIRL in the following manner:

A negligible individual risk level (NIRL) is defined here as a level of average annual excess risk of fatal health effects attributable to irradiation, below which further effort to reduce radiation exposure to the individual is unwarranted. The NIRL is regarded as *trivial* [emphasis in original] compared to the risk of fatality associated with ordinary, normal societal activities and can, therefore, be *dismissed from consideration* [emphasis in original].

In the radiation protection field, the need for a reasonably negligible risk level to avoid excessive control actions and expenditures to reduce individual risk has long been recognized. In effect, regulatory practices have involved low exposure cut-off levels for various hazardous agents or situations, apparently on the basis of the triviality of the risks as compared with other natural or man-made risks. Decisions based on the concept of reasonably negligible risk are made frequently in many societal and individual activities.

We selected a value three-orders of magnitude (1 one-thousandth) of the NIRL to assure an adequate margin for reporting because LLNL has, and most likely will continue to have, more than 100 inventoried sources contributing very small doses (and, therefore, risks). The choice of a value three-orders of magnitude below the NIRL assures that the sum of these small sources will not exceed the NIRL.

Interestingly, the concept of risk is one that directly involves populations. A risk of  $1 \times 10^{-7}$  means that one person in 10 million is at risk of fatality. Similarly, a risk of  $1 \times 10^{-10}$  means that one person in 10 billion is at risk of fatality. The choice of such a low risk level as a screening level is protective of all people who could possibly be exposed.

In implementing this risk-based graded approach, we would continue to evaluate all sources for their dose consequences. However, those sources having risk levels less than  $1 \times 10^{-10}$  would be documented internally, and would not be part of the formal annual NESHAPs report.

The differences between the current graded approach and the suggested risk-based graded approach as applied to LLNL operations in calendar year 2000 are presented in Table 1 (see next page). As can be seen from the table, the differences are in the treatment of low-risk inventoried point sources. If the modified approach had been implemented in calendar year 2000, 122 sources would have been documented internally. The frequency distribution of sources by dose for calendar year 2000 is typical of the data since reporting began. Among the inventoried sources having low associated risks are radiological measurement laboratories where the radioactivity of environmental or bioassay samples is measured; metallography laboratories where small metallic uranium samples are prepared and analyzed for physical structure; and research facilities where radiolabeled DNA and other compounds are used.

Mr. Jack Broadbent, Director, Air Division U.S. Environmental Protection Agency, Region IX Page 3

SUBJECT: Graded Approach to Compliance Demonstration for Radionuclide NESHAPs

Table 1. Comparison of graded approaches by emission category for calendar year 2000.

| Emission category                                                     | Curre<br>Frequency<br>of<br>evaluation | ent graded a<br>Dose<br>level<br>(mrem)                                        | approach<br>Risk<br>level      | Number<br>of<br>sources | Propose<br>Frequency<br>of<br>evaluation                                                                                     | sed graded<br>Dose<br>level<br>(mrem) | approach<br>Risk<br>level | Number<br>of<br>sources |
|-----------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|--------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|-------------------------|
| Monitored stack emissions                                             | Annual                                 | Any                                                                            | Any                            | 46                      | Same                                                                                                                         | Same                                  | Same                      | Same                    |
| Site 300<br>Shots                                                     | Annual                                 | Any                                                                            | Any                            | 1                       | Same                                                                                                                         | Same                                  | Same                      | Same                    |
| Monitored diffuse sources                                             | Annual                                 | Annual                                                                         | Annual                         | 4                       | Same                                                                                                                         | Same                                  | Same                      | Same                    |
| Inventoried<br>stack<br>emissions,<br>room air,<br>diffuse<br>sources | Annual                                 | Approx.<br>0.001<br>(New<br>sources and<br>top 90%<br>contributors<br>to dose) | Approx.<br>≥2x10 <sup>-8</sup> | 5                       | Same                                                                                                                         | ≥5x10 <sup>-6</sup>                   | ≥1x10 <sup>-1</sup>       | <sup>0</sup> 18         |
| Inventoried<br>stack<br>emissions,<br>room air,<br>diffuse<br>sources | Triennial<br>update                    | Approx.<br><0.001                                                              | Approx. <2x10 <sup>-8</sup>    | 135                     | Pre-operationa<br>(NEPA/IWS)<br>review as<br>operations are<br>proposed or<br>changed<br>(to be<br>documented<br>internally) |                                       | <1x10 <sup>-1(</sup>      | 122                     |

We believe this administrative change from our current practice is justifiable based on nearly ten years of reporting data for very small sources. In addition, LLNL has made an institutional commitment to Integrated Safety Management, which has added another venue for surfacing NESHAPs Subpart H issues in planned and existing projects.

The requested reporting method is also consistent with other radionuclide NESHAPs regulations. Facilities having radionuclide emissions, but regulated by 40 CFR 61, Subpart I, are exempt from reporting requirements if the dose consequences are less than 10% of the 10 mrem standard (i.e., less than 1 mrem); they must, however, keep internal records of the determination of dose. The total LLNL dose consequences are now less than 1% of the standard, and the sources that would not be reported, but documented internally, under the new graded approach represent doses less than 0.01% of the standard.

Finally, we believe this proposed change is consistent with the U.S. EPA's position taken with respect to reporting exemptions for releases of naturally occurring radionuclides

TAMM01-030-01\_91\_I

Mr. Jack Broadbent, Director, Air Division U.S. Environmental Protection Agency, Region IX Page 4

SUBJECT: Graded Approach to Compliance Demonstration for Radionuclide NESHAPs

from coal and coal ash piles. In that regard, the U.S. EPA has stated "Eliminating needless reporting burdens . . . will also allow EPA to better focus its resources on the most serious releases, resulting in more effective protection of public health and welfare and the environment." (63 Fed. Reg. 13460, March 19, 1998.)

The new graded approach would have the added benefit of making the annual LLNL NESHAPs report more understandable to the public, because the report would be focused on the most significant sources of emissions.

To summarize, we are requesting implementation of a risk-based graded approach the effect of which would be to evaluate the doses from inventoried sources having a risk of less than  $1 \times 10^{-10}$  once and document the evaluation internally only; such evaluations would be conducted whenever a new activity is proposed or an existing activity changed. All other evaluation and reporting practices would remain the same. We hope this letter clarifies our request for a change in the graded approach to radionuclide NESHAPs compliance demonstration. Please contact Art Biermann (925) 422-8017 with any questions. Thank you for your continued attention to our requests.

Sincerely,

C. Susi Jackson, Leader

Operational and Regulatory Affairs Division

CSJ/GG/jk

CC

Biermann, A.
Black, S.
Lasell, S.
Lee, J.
Lessler, R.

Lessler, R. Rosenblum, S DCC L-629

DOE/OAK DOE/OAK L-701

EPA, Region IX EPA, Region IX



#### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

#### **REGION IX**

#### 75 Hawthorne Street San Francisco, CA 94105-3901

MAY - 1 2002

Ms. C. Susi Jackson, Leader Operations and Regulatory Affairs Division Lawrence Livermore National Laboratory Environmental Protection Department University of California P.O. Box 808, Livermore, CA 94551-9900

POP II

Subject: Response to Letter of July 12, 2001 Requesting Implementation of a Risk-based Graded Approach

Dear Ms. Jackson:

This letter is in response to your letter of July 12, 2001 (enclosed), which provided additional explanation and support for Lawrence Livermore National Laboratory's (LLNL) request of February 9, 2001, that LLNL be permitted to change the current graded approach for demonstrating compliance with EPA's radionuclide NESHAPs at 40 C.F.R. Part 61, Subpart H. We have reviewed the data and information contained in your July 12 letter, and, while we agree that LLNL has presented a scientifically credible rationale, we have concluded that at the present time, the specific regulatory requirements of 40 C.F.R. Part 61, Subpart H for compliance demonstration do not allow the type of graded approach that LLNL requests. Accordingly, we must disapprove your request, at this time.

If you have any questions regarding this disapproval, or if we can be of further assistance, please contact Dick Lessler, at (415) 947-4197.

Sincerely,

Jack P. Broadbent

Director, Air Division

och P. Broadlest

Enclosure

cc: Art Biermann, LLNL

Printed on Recycled Paper